Chemical composition and herbicidal activity of flower extract from spiked spiralflag ginger (Costus spicatus)
Nội dung chính của bài viết
Tóm tắt
This study aimed to detemine the chemical composition and evaluate the herbicidal potential of flower extracts from Costus spicatus. The ethanol extract exhibited markedly higher total phenolic and flavonoid contents (0.754 mg GAE/g FW and 0.470 mg QE/g FW) than the aqueous extract (0.182 mg GAE/g FW and 0.038 mg QE/g FW). Notably, the phenolic and flavonoid contents of the ethanol extract (0.754 mg GAE/g FW and 0.470 mg QE/g FW) was four and twelve times greater than that of the aqueous extract (0.182 mg GAE/g FW and 0.038 mg QE/g FW). Bioassays showed that the ethanol extract strongly inhibited seed germination, root elongation, and shoot growth of mustard greens, with the greatest effect on shoot length (IC₅₀=1.431 mg/mL). The herbicidal property increased proportionally to its concentrations. Besides, the ethanol extract, at a concentration of 1.5 mg/mL, markedly lowered chlorophyll a, total chlorophyll, and carotenoid levels in mustard seedlings relative to the control. Regarding pigment biosynthesis, treatment with ethanol extract at 1.5 mg/mL significantly reduced chlorophyll a, total chlorophyll, and carotenoid contents in mustard green seedlings compared to the control. These results indicate that Costus spicatus flowers possess potent allelopathic properties, reducing germination, growth, and photosynthetic pigment levels. These findings indicate that Costus spicatus flowers possess strong inhibitory potency on seed germination, growth, and reduce the photosynthetic capacity of plants. Further studies are needed to isolate and identify active compounds for sustainable weed management.
Từ khóa
Costus spicatus, flavonoids, flower extract, herbicidal activity, phenolic, pigment biosynthesis
Chi tiết bài viết

Bài báo này được cấp phép theo Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Ali, A., Ali, A., Ahmad, W., Amir, M., Ashraf, K., Wahab, S., Alam, P., Abutahir, & Ahamad, A. (2022). Nephroprotective effect of polyphenol-rich extract of Costus spicatus in cisplatin-induced nephrotoxicity in Wistar albino rats. 3 Biotech, 12(9), 189. https://doi.org/10.1007/s13205-022-03233-z.
Andriana, Y., Xuan, T.D., Quan, N.V., & Quy, T.N. (2018). Allelopathic potential of Tridax procumbens L. on radish and identification of allelochemicals. Allelopathy Journal, 43, 223-238.
Anh, L, H., Quan, N. V., Nghia, L. T., & Xuan, T. D. (2021). Phenolic allelochemicals: achievements, limitations, and prospective approaches in weed management. Weed Biology and Management, 21, 37-67. https://doi.org/10.1111/wbm.12230.
Antralina, M., Istina, I.N., & Simarmata, T. (2015). Effects of difference weed control method to yield of Lowland rice in the SOBARI. Proceedia Food Science, 3, 323-329. https://doi.org/10.1016/j.profoo.2015.01.035.
Batish, D.R., Singh, H.P., Rana, N., & Kohli, R.K (2006). Assessment of allelopathic interference of Chenopodium album through its leachates, debris extracts, rhizosphere and amended soil. Archives Agronomy and Soil Science, 52, 705-715.
Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1-16. https://doi.org/10.3389/fpls.2015.01020.
Davis, A. S., & Frisvold, G. B. (2017). Are herbicides a once in a century method of weed control?. Pest Management Science, 73(11), 2209-2220. https://doi.org/10.1002/ps.4643.
De Albuquerque, M.B., Dos Santos, R.C., Lima, L.M., Melo Filho, P.D.A., Nogueira, R.J.M.C., Da Camara, C.A.G., & Ramos, A.D.R. (2011). Allelopathy, an alternative tool to improve cropping systems. A review. Agronomy Sustainable Development, 31, 379-395. https://doi.org/10.1051/agro/2010031.
Dennis, P.G., Kukulies, T., Forstner, C., Orton, T.G., & Pattison, A.B. (2018). The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Scientific Reports, 8, 1-9. https://doi.org/10.1038/s41598-018-20589-6.
Devendran, G., & Sivamani, G. (2015). Phytochemical analysis of leaf extract of plant Costus spicatus by GCMS method. Journal of Drug Delivery and Therapeutics, 5(4), 24-26. https://doi.org/10.22270/jddt.v5i4.1160.
Gonçalves, C., Castro, C. E. F., Azevedo Filho, J. A., Dias-Tagliacozzo, G. M. (2005). Evaluation of Costus species and their use as indoor potted plants. Acta Horticulturae, 683, 319-325. https://doi.org/10.17660/ActaHortic.2005.683.39.
Gonzalo, L. P., María, S.V., & Leandro, A.M. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. Herbicides and Environment,16, 343-368. https://doi.org/10.5772/12877.
Harborne, J. B. (1973). Phytochemical methods: A guide to modern techniques of plant analysis (pp. 49-188). Chapman and Hall, London.
Hagner, M., Mikola, J., Saloniemi, I., Saikkonen, K., & Helander, M. (2019). Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-019-44988-5.
Hanifah, H. N., Hadisoebroto, G., & Dewi, L. (2021). Comparison of phenolic, flavonoid, and tannin contents from ethanol extract of Kratom stem (Mitragyna speciosa Korth.) and senggani flower (Melastoma malabathrium L.). Journal of Physics, 1869(1), 1-7. https://doi.org/10.1088/1742-6596/1869/1/012002.
Hussain, M. I., & Reigosa, M. J. (2017). Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. Ecotoxicology, 26, 613-624. https://doi.org/10.1007/s10646-017-1794-3.
John, J., & Sarada, S. (2012). Role of phenolics in allelopathic interactions. Allelopathy Journal, 2, 215-230.
Khanh, T.D., Cong, L.C., Xuan, T.D., Lee, S.J., Kong, D.S., & Chung, I.M. (2008). Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituents. Weed Science, 56, 119-127.
Khang, D.T., La, A.H., Pham, H.T.H., Phung, T.T., Nguyen, Q.V., Luong, M.T., Luong, M.T., Nguyen, Q.T., Truong, M.N., Tran, X.D., Tran, K.D., & Trung, K.H. (2016). Allelopathic activity of dehulled rice and its allelochemicals on weed germination. International Letters of Natural Sciences, 58, 1-10.
Keller, A. C., Vandebroek, I., Liu, Y., Balick, M. J., Kronenberg, F., Kennelly, E. J., & Brillantes, A. M. (2009). Costus spicatus tea failed to improve diabetic progression in C57BLKS/J db/db mice, a model of type 2 diabetes mellitus. Journal of Ethnopharmacology, 121(2), 248-254. https://doi.org/10.1016/j.jep.2008.10.025.
Ladhari, A., Gaaliche, B., Zarrelli, A., Ghannem, M., & Mimoun, M, B. (2020). Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. South African Journal of Botany, 130, 30-44. https://doi.org/10.1016/j.sajb.2019.11.026.
Ladhari, A., Omezzine, F., & Haouala, R. (2014). The impact of Tunisian Capparidaceae species on cytological, physiological and biochemical mechanisms in lettuce. South African Journal of Botany, 93, 222-230.
Mandal, M., Mandal, S.K., & Kiran, K. (2015). Allelopathic effects of medicinal plant species on seed germination and seedling growth of wheat varieties. Journal of Medicinal and Aromatic Plant Sciences, 37(2), 35-40. https://doi.org/10.62029/jmaps.v37i2.Mandal
Maulana, T., Falah, S., & Andrianto, D. (2019). Total phenolic content, total flavonoid content, and antioxidant activity of water and ethanol extract from Surian (Toona sinensis) leaves. IOP Conference Series: Earth and Environmental Science, 299, 1-9.
Mushtaq, W., & Fauconnier, M, L. (2024). Phenolic profiling unravelling allelopathic encounters in agroecology. Plant Stress, 13 (9), 1-11. https://doi.org/10.1016/j.stress.2024.100523.
Nam, N. C., Linh, P. K., & Thi, H. L. (2021). A study on the allelopathic activity and quantitative determination of total phenolic and flavonoid of six plants in the Asteraceae family. Vietnam Journal of Science and Technology, 63(5), 35-40. https://doi.org/10.31276/VJST.63(5).
Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7 (9), 1776-1782. https://doi.org/10.1007/s12161-014-9814-x.
Quintans Júnior, L. J., Santana, M. T., Melo, M. S., De Sousa, D. P., Santos, I. S., Siqueira, R. S., Lima, T. C., Silveira, G. O., Antoniolli, A. R., Ribeiro, L. A., & Santos, M. R. (2010). Antinociceptive and anti-inflammatory effects of Costus spicatus in experimental animals. Pharmaceutical Biology, 48(10), 1097-1102. https://doi.org/10.3109/13880200903501822.
Quy, T. N., Xuan, T. D., Andriana, Y., Tran, H. D., Khanh, T. D., & Teschke, R. (2019). Cordycepin isolated from Cordyceps militaris: Its newly discovered herbicidal property and potential plant-Based novel alternative to glyphosate. Molecules, 24 (16), 1-18. https://doi.org/10.3390/molecules24162901.
Sharshar, A. A. H., Shahen, M., Ali, E. F., Majrashi, A., Eid, S. D. M., Khaffagy, A. E., & Ageba, M. F. (2022). Improving integrated management of weed control by determination of weed seed bank in sandy and clay soil. Saudi Journal of Biological Sciences, 29(4), 3023-3032. https://doi.org/10.1016/j.sjbs.2022.01.033.
Shediwah, F. M., Naji, K. M., Gumaih, H. S., Alhadi, F. A., Al-Hammami, A. L., & D'Souza, M. R. (2019). Antioxidant and antihyperlipidemic activity of Costus speciosus against atherogenic diet-induced hyperlipidemia in rabbits. Journal of Integrative Medicine, 17(3), 181-191. https://doi.org/10.1016/j.joim.2019.02.002.
Sun, C., Wu, Z., Wang, Z., & Zhang, H. (2015). Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine, 595393. https://doi.org/10.1155/2015/595393.
Thepphakhun, T., & Intanon, S. (2020). Total phenolics, flavonoids, antioxidant activity, and allelopathic potential of praxelis. Journal of Current Science and Technology, 10 (1), 59-65.
Thi, H.L., Bao, L. P.D., Trung, H.V., Xuan, D.T.T., & Ngan, N.T. (2025). Allelopathic effects of essential oils from Zingiberaceae species on weed growth. Tropical Journal of Natural Product Research, 9(4), 1457-1463. https://doi.org/10.26538/tjnpr/v9i4.11.
Widodo, A., Zubair, M. S., Ibrahim, N., Hutapea, E. J. D., Riswandi1, Farahdita, W., Musnina, W. O, S., & Tandi, J. (2022). Phenolic constituents, flavonoid constituents, antioxidant, and toxicity of ethanol extract of root, stem, leaf, flower, fruit, and seed of Gynandropsis gynandra (L.) Briq. Rasayan Journal of Chemistry, 15(03), 2010-2015. https://doi.org/10.31788/RJC.2022.1537006.
Xuan, T. D., Shinkichi, T., Khanh, T. D., & Chung, I. M. (2005). Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop Protection, 24 (3), 197-206. https://doi.org/10.1016/j.cropro.2004.08.004.
Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191 (3), 162-171. https://doi.org/10.1111/j.1439-037X.2005.00170.x.
Yadav, R.N.S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3 (12), 10-14.
Zhang, C., Chen, C., Dong, H., Shen, J. R., Dau, H., & Zhao, J. (2015). Inorganic chemistry. A synthetic Mn₄Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science, 348(6235), 690-693. https://doi.org/10.1126/science.aaa6550.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Trần Thanh Mến, Nguyễn Đình Hải Yến, Đái Thị Xuân Trang, Khảo sát độc tính và khả năng bảo vệ gan của cao chiết methanol lá một số thực vật trên dòng tế bào HepG2 , Tạp chí Khoa học Đại học Đồng Tháp: Số 33 (2018): Phần B - Khoa học Tự nhiên
- Trần Thanh Mến, Trần Thúy Quỳnh, Võ Phát Tài, La Thị Kim Tú, Nguyễn Tường Quyên, Võ Đức Thái, Phân lập vi khuẩn có khả năng gây độc cho ruồi giấm Drosophila melanogaster , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 04S (2025): Số Đặc biệt Hội nghị Khoa học tự nhiên Đồng bằng sông Cửu Long
- TS Phạm Minh Nhựt, ThS Ngô Trần Thùy Trang, ThS Phú Tường Nguyên Dũng, Mai Thị Diễm Trang, Trần Thanh Mến, Khảo sát hàm lượng một số hoạt chất và hoạt tính sinh học của rễ củ đại kích biển (Pouzolzia zeylanica) trồng trên vùng cát biển tại huyện Thạnh Phú, tỉnh Bến Tre , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 04S (2025): Số Đặc biệt Hội nghị Khoa học tự nhiên Đồng bằng sông Cửu Long
- Phó giáo sư Nguyễn Văn Ây, Mai Vũ Duy, Phạm Ý Nhi, Trần Ngọc Quý, Ảnh hưởng của Kinetin, NAA và IBA lên sự nhân chồi và tạo rễ in vitro của cây Trầu bà Hạc Cam (Philodendron billietiae) , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 04S (2025): Số Đặc biệt Hội nghị Khoa học tự nhiên Đồng bằng sông Cửu Long
- Ngô Thanh Phong, ThS Phùng Thị Hằng, PGS. TS Trần Thanh Mến, Cử nhân Huỳnh Phong Phúc, Khảo sát tài nguyên thực vật dược lớp Ngọc lan dưới tán rừng ở xã Măng Đen và Kon Plông thuộc tỉnh Quảng Ngãi , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 04S (2025): Số Đặc biệt Hội nghị Khoa học tự nhiên Đồng bằng sông Cửu Long
- Cử nhân Tô Thiện Kim Ngân, Cử nhân Nguyễn Thị Mỹ Ngân, PGS.TS Đỗ Tấn Khang, Thạc sĩ Phùng Thị Hằng, Nghiên cứu đặc điểm hình thái, cấu trúc giải phẫu của một số loài tràm (Melaleuca spp.), tràm liễu (Callistemon citrinus) và keo lá tràm (Acacia auriculiformis) , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 04S (2025): Số Đặc biệt Hội nghị Khoa học tự nhiên Đồng bằng sông Cửu Long