Sufficient condition for generalized synchronization in the networks of two ordinary differential equations of FitzHugh-Nagumo type with bidirectionally linear coupling
Main Article Content
Abstract
This paper studies the generalized synchronization in the network of two ordinary differential equations of FitzHugh-Nagumo type with bidirectionally linear coupling. Specifically, it examines the sufficient conditions on the coupling strength to get the generalized synchronization and simulations for checking the theoretical results.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
generalized synchronization, ordinary differential equations of FitzHugh-Nagumo, bidirectionally linear coupling
References
Aeyels, D. (1995). Asymptotic Stability of Nonautonomous Systems by Lyapunov's Direct Method. Systems and Control Letters, 25, 273-280. http://dx.doi.org/10.1016/0167-6911(94)00088-d.
Aziz-Alaoui, M. A. (2006). Synchronization of Chaos. Encyclopedia of Mathematical Physics, Elsevier, 5, 213-226. http://dx.doi.org/10.1016/b0-12-512666-2/00105-x.
Ambrosio, B., & Aziz-Alaoui, M. A. (2012). Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type. Computers and Mathematics with Application, 64, 934-943. http://dx.doi.org/10.1016/j.camwa.2012.01.056.
Ambrosio, B., & Aziz-Alaoui, M. A. (2013). Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type. ESAIM: Proceedings and Surveys, 39, 15-24. http://dx.doi.org/10.1051/proc/201339003.
Ambrosio, B., Aziz-Alaoui, M. A. & Phan V. L. E. (2018). Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. American institute of mathematical sciences, 23 (9), 3787-3797. http://dx.doi.org/10.3934/dcdsb.2018077.
Braun, H.A., Wissing, H., Schäfer, K., & Hirsch, M.C. (1994). Oscillation and noise determine signal transduction in shark multimodel sensory cells. Nature, 367, 270-273. http://dx.doi.org/10.1038/367270a0.
Ermentrout, G. B., & Terman, D. H. (2009). Mathematical Foundations of Neurosciences. Springer.
Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol., 43, p. 867-896. http://dx.doi.org/10.1085/jgp.43.5.867.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., (117), 500-544. http://dx.doi.org/10.1113/jphysiol.1952.sp004764.
Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE., (50), 2061-2070. http://dx.doi.org/10.1109/jrproc.1962.288235.
Phan, V. L. E. (2022). Sufficient Condition for Synchronization in Complete Networks of Reaction-Diffusion Equations of Hindmarsh-Rose Type with Linear Coupling. IAENG International Journal of Applied Mathematics, vol. 52, no. 2, 315-319.
Phan, V. L. E. (2023). Sufficient Condition for Synchronization in Complete Networks of n Reaction-Diffusion Systems of Hindmarsh-Rose Type with Nonlinear Coupling. Engineering Letters, vol. 31, no. 1, 413-418.
Aziz-Alaoui, M. A. (2006). Synchronization of Chaos. Encyclopedia of Mathematical Physics, Elsevier, 5, 213-226. http://dx.doi.org/10.1016/b0-12-512666-2/00105-x.
Ambrosio, B., & Aziz-Alaoui, M. A. (2012). Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type. Computers and Mathematics with Application, 64, 934-943. http://dx.doi.org/10.1016/j.camwa.2012.01.056.
Ambrosio, B., & Aziz-Alaoui, M. A. (2013). Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type. ESAIM: Proceedings and Surveys, 39, 15-24. http://dx.doi.org/10.1051/proc/201339003.
Ambrosio, B., Aziz-Alaoui, M. A. & Phan V. L. E. (2018). Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. American institute of mathematical sciences, 23 (9), 3787-3797. http://dx.doi.org/10.3934/dcdsb.2018077.
Braun, H.A., Wissing, H., Schäfer, K., & Hirsch, M.C. (1994). Oscillation and noise determine signal transduction in shark multimodel sensory cells. Nature, 367, 270-273. http://dx.doi.org/10.1038/367270a0.
Ermentrout, G. B., & Terman, D. H. (2009). Mathematical Foundations of Neurosciences. Springer.
Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol., 43, p. 867-896. http://dx.doi.org/10.1085/jgp.43.5.867.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., (117), 500-544. http://dx.doi.org/10.1113/jphysiol.1952.sp004764.
Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE., (50), 2061-2070. http://dx.doi.org/10.1109/jrproc.1962.288235.
Phan, V. L. E. (2022). Sufficient Condition for Synchronization in Complete Networks of Reaction-Diffusion Equations of Hindmarsh-Rose Type with Linear Coupling. IAENG International Journal of Applied Mathematics, vol. 52, no. 2, 315-319.
Phan, V. L. E. (2023). Sufficient Condition for Synchronization in Complete Networks of n Reaction-Diffusion Systems of Hindmarsh-Rose Type with Nonlinear Coupling. Engineering Letters, vol. 31, no. 1, 413-418.
Most read articles by the same author(s)
- Van Long Em Phan, Transition of spiral solutions according to the time and space steps discretization of reaction-diffusion system of FitzHugh-Nagumo type , Dong Thap University Journal of Science: Vol. 12 No. 5 (2023): Natural Sciences Issue (English)
- Van Long Em Phan, Synchronization in complete networks of ordinary differential equations of Fitzhugh – Nagumo type with nonlinear coupling , Dong Thap University Journal of Science: Vol. 10 No. 5 (2021): Natural Sciences Issue (English)
- Van Long Em Phan, Synchronization in complete networks of reaction-diffusion equations of Fitzhugh-Nagumo wiht spiral solutions , Dong Thap University Journal of Science: No. 37 (2019): Part B - Natural Sciences
- TS. Van Long Em Phan, Sinh viên Tan Dat Nguyen, Sinh viên Minh Phuc Nguyen, Sinh viên Thi Ngoc Lan Nguyen, Identical synchronization controller between the Hindmarsh -Rose 2D and the FitzHugh-Nagumo type model , Dong Thap University Journal of Science: Vol. 13 No. 8 (2024): Natural Sciences Issue (Vietnamese)