Isolation and evaluation of thermophilic bacteria for ethanol fermentation from agricultural materials
Main Article Content
Abstract
This study was carried out to select the various strains of thermophilic bacteria having the ethanol fermentation activity. In this study, a total of 27 strains were isolated from different agricultural materials of ripe fruits, sawdust, bagasse from sugarcane, molasses, flowers of fruit-tree and honey. In the fermentation testing, eleven of the strains performed the rapid fermentation rate. In the testing of colony growth after 72 hours of incubation at different temperature levels of 30, 35, 40, 45 and 50oC, seven bacterial strains (MC3, BM2, BM3, RD, HM1, HM2 and MO) could grow at 50oC. Five strains (MC3, BM2, HM1, HM2 and MO) gave the possibility of fermentation from 6 testing sugar resources (glucose, sucrose, galactose, lactose, arabinose and xylose); whereas two strains BM3 and RD gave no fermentative signal from arabinose but could ferment from other 5 sugar resources. Based on the characteristics of morphology, physiology, biochemistry and DNA sequencing analyses, the selected bacterial strain (MO) was characterized as Bacillus subtilis.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Agriculture waste, bioethanol, ethanol fermentation, thermophilic bacteria
References
Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Applied microbiology and biotechnology, 85, 861-867.
Benson, H.J. (1994). Microbiological application, laboratory manual in general microbiology. W.M.C. Brown Publishers, Dubuque, U.S.A.
Choonut, A., Saejong, m., & Sangkharak, K. (2014). The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia, 52, 242-249.
Collins, C.H. & Lyne, P.M. (1995). Collins and Lyne’s microbiological methods. Butterworth-Heinemann Ltd, Oxford.
Htet, N. N. W., Hlaing, T. S., Yu, S. Z., & Yu, S. S. (2018). Isolation and characterization of xyloseutilizing yeasts for ethanol production. J. Bacteriol. Mycol. Open Access, 6(2), 109-114.
Huynh, X. P., Klanrit, P., Dung, N. T. P., Thanonkeo, S., Yamada, M., & Thanonkeo, P. (2022). High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae. Scientific Reports, 12(1), 13965.
Kuan-Fu, L., Chiu-Hsia, C., Ya-Li, S., Winton, C. & Chun-Hung, L. (2010). Effects of the probitotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish and shellfish immunology, 28(5-6), 837-844.
Miah, R., Siddiqa, A., Chakraborty, U., Tuli, J. F., Barman, N. K., Uddin, A., Aziz, T., Sharif, N. , Dey, S. K., Yamada, M., & Talukder, A. A. (2022). Development of high temperature simultaneous saccharification and fiIermentation by thermosensitive Saccharomyces cerevisiae and Bacillus amyloliquefaciens. Nature portfolio, 12, 3630.
Ndubuisi, I.A., Qin, Q., Liao, G., Wang, B., Moneke, A.N., Ogbonna, J.C., Jin, C. and Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnol Biofuels, 13(91), 1-12.
Obire, O. (2005). Activity of Zymomonas species in palm-sap obtained from three areas in Edo State, Nigeria. J. Appl. Sci. Environ. Mgt, 9(1), 25-30.
Onsoy, T., Thanonkeo, P., Thanonkeo, S., & Yamada, M. (2007). Ethanol production from jerusalem artichoke by Zymomonas mobilis in batch fermentation. KMITL Science and Technology Journal, 7 (S1), 55-60.
Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 64(1), 34-50.
Ozojiofor, U. (2023). Isolation and identification of non-saccharomyces ethanol and thermo-tolerant yeasts strains from fermented carbohydrate wastes. Journal of Current Biomedical Research, 3(3, May-June), 984-992.
Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., & Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisia e for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek, 112, 975-990.
Pelezar, M.J., Chan, E.C.S., & Krieg, N.R. (1986). Microbiology: concepts and applications. McGraw Hill, Inc., New York, U.S.A.
Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, Limtong, S., Kosaka, T., & Yamada, M. (2011). Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Applied microbiology and biotechnology, 90, 1573-1586.
Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology, 99(13), 5270-5295.
Soleimani, S. S., Adiguzel, A., & Nadaroglu, H. (2017). Production of bioethanol by facultative anaerobic bacteria. Journal of the Institute of Brewing, 123(3), 402-406.
Stulke, J., & Hillen, W. (2000). Regulation of carbon catabolism in Bacillus species. Annual Review of Microbiology, 54, 849-880.
Romero, S., Merino, E., Bolívar, F., Gosset, G., & Martinez, A. (2007). Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Applied and environmental microbiology, 73(16), 5190-5198.
Talukder, A. A., Adnan, N., Siddiqa, A., Miah, R., Tuli, J. F., Khan, S. T., Deya, S. K., Lertwattanasakulc, N., & Yamada, M. (2019). Fuel ethanol production using xylose assimilating and high ethanol producing thermosensitive Saccharomyces cerevisiae isolated from date palm juice in Bangladesh. Biocatalysis and Agricultural Biotechnology, 18, 1-7.
Talukder, A. A., Easmin, F., Mahmud, S. A., & Yamada, M. (2016). Thermotolerant yeasts capable of producing bioethanol: isolation from natural fermented sources, identification and characterization. Biotechnology & Biotechnological Equipment, 30(6), 1106-1114.
Tesfaw, A., & Assefa, F. (2014). Current trends in bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor reduction, growth variables, coculture, and immobilization. International Scholarly Research Notices, 1-11.
Warren, P., & Shadomy, L. (1991). Yeast fermentation broth base with carbohydrate and Durham tube. Manual of Clinical Microbiology, 5, 34-39.
Most read articles by the same author(s)
- Duy Hoang Vo, Huynh Hong Vu Ha, Thi Pha Ly Nguyen, Thi Ngoc Lanh Nguyen, Assessing ability of antagonistic actinomycetes to Fusarium moniliforme in net house condition , Dong Thap University Journal of Science: Vol. 13 No. 2 (2024): Natural Sciences Issue (Vietnamese)
- Thi Cam Tu Tran, Huynh Hong Vu Ha, Duy Hoang Vo, Surveying the development and growth of thai paper flowerscion (Bougainvillea spp.) with red, orange, pink plants colors grafted on the original paper rootstock , Dong Thap University Journal of Science: Vol. 13 No. 2 (2024): Natural Sciences Issue (Vietnamese)