Necessary and sufficient conditions for identical synchronization in a network of two  ordinary diferential systems of Hindmarsh-Rose 3D type with bidirectionally linear coupling

Van Long Em Phan1, , Tran Quoc Ky Dang1, Hoang Kiet Cao1
1 An Giang University, Vietnam National University Ho Chi Minh City, Vietnam

Main Article Content

Abstract

This study explores the sufficient and necessary conditions for achieving identical synchronization in a network of two ordinary differential systems of Hindmarsh-Rose 3D type (HR) with bidirectionally linear coupling. By constructing a suitable Lyapunov function, sufficient conditions are identified, while necessary conditions are derived using the largest transverse Lyapunov exponent. The findings indicate that identical synchronization occurs only when the coupling strength is sufficiently large. Additionally, this study employs numerical methods implemented in the R software to test the concerned theories.

Article Details

References

Aeyels, D. (1995). Asymptotic Stability of Nonautonomous Systems by Lyapunov’s Direct Method. Systems and Control Letters, 25, 273-280. https://doi.org/10.1016/0167-6911(94)00088-D
Aziz-Alaoui, M. A. (2006). Synchronization of Chaos. Encyclopedia of Mathematical Physics, Elsevier, Vol. 5, 213-226.
Braun, H. A., Wissing, H., Schäfer, K., & Hirsch, M. C. (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 367(6460), 270-273. https://doi.org/10.1038/367270a0
Corson, N. (2009). Dynamique d'un modèle neuronal, synchronisation et complexité, Luận án Tiến sĩ, Trường Đại học Le Havre, Pháp.
Ermentrout, G. B., & Terman, D. H. (2009). Mathematical Foundations of Neurosciences. Springer.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., Vol. 117, p. 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
Khalil, H. K. (2002). Nonlinear Systems, third ed., Prentice Hall, New York.
Pecora, L. M., & Carroll, T. L. (1998). Master stability functions for synchronized coupled systems. Physical review letters, 80(10), 2109. https://doi.org/10.1103/PhysRevLett.80.2109
Wang H. X., Lu Q. S., & Wang Q. Y. (2005). Complete synchronization in coupled chaotic Hindmarsh-Rose neurons with symmetric coupling schemes, Chineese Review Letter, 22(9), p. 2173-2175. https://doi.org/10.1088/0256-307X/22/9/009
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: nonlinear phenomena, 16(3), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
Yanchuk, S., Maistrenko, Y., Lading, B., & Mosekilde, E. (2000). Effects of a parameter mismatch on the synchronization of two coupled chaotic oscillators. International Journal of Bifurcation and Chaos, 10(11), 2629-2648. https://doi.org/10.1142/S0218127400001584