Necessary and sufficient conditions for identical synchronization in a network of two ordinary diferential systems of Hindmarsh-Rose 3D type with bidirectionally linear coupling
Main Article Content
Abstract
This study explores the sufficient and necessary conditions for achieving identical synchronization in a network of two ordinary differential systems of Hindmarsh-Rose 3D type (HR) with bidirectionally linear coupling. By constructing a suitable Lyapunov function, sufficient conditions are identified, while necessary conditions are derived using the largest transverse Lyapunov exponent. The findings indicate that identical synchronization occurs only when the coupling strength is sufficiently large. Additionally, this study employs numerical methods implemented in the R software to test the concerned theories.
Keywords
Coupling strength, Hindmarsh-Rose 3D model, largest transverse Lyapunov exponent, identical synchronization
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Aziz-Alaoui, M. A. (2006). Synchronization of Chaos. Encyclopedia of Mathematical Physics, Elsevier, Vol. 5, 213-226.
Braun, H. A., Wissing, H., Schäfer, K., & Hirsch, M. C. (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 367(6460), 270-273. https://doi.org/10.1038/367270a0
Corson, N. (2009). Dynamique d'un modèle neuronal, synchronisation et complexité, Luận án Tiến sĩ, Trường Đại học Le Havre, Pháp.
Ermentrout, G. B., & Terman, D. H. (2009). Mathematical Foundations of Neurosciences. Springer.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., Vol. 117, p. 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
Khalil, H. K. (2002). Nonlinear Systems, third ed., Prentice Hall, New York.
Pecora, L. M., & Carroll, T. L. (1998). Master stability functions for synchronized coupled systems. Physical review letters, 80(10), 2109. https://doi.org/10.1103/PhysRevLett.80.2109
Wang H. X., Lu Q. S., & Wang Q. Y. (2005). Complete synchronization in coupled chaotic Hindmarsh-Rose neurons with symmetric coupling schemes, Chineese Review Letter, 22(9), p. 2173-2175. https://doi.org/10.1088/0256-307X/22/9/009
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: nonlinear phenomena, 16(3), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
Yanchuk, S., Maistrenko, Y., Lading, B., & Mosekilde, E. (2000). Effects of a parameter mismatch on the synchronization of two coupled chaotic oscillators. International Journal of Bifurcation and Chaos, 10(11), 2629-2648. https://doi.org/10.1142/S0218127400001584
Most read articles by the same author(s)
- Van Long Em Phan, Transition of spiral solutions according to the time and space steps discretization of reaction-diffusion system of FitzHugh-Nagumo type , Dong Thap University Journal of Science: Vol. 12 No. 5 (2023): Natural Sciences Issue (English)
- Van Long Em Phan, Synchronization in complete networks of ordinary differential equations of Fitzhugh – Nagumo type with nonlinear coupling , Dong Thap University Journal of Science: Vol. 10 No. 5 (2021): Natural Sciences Issue (English)
- Van Long Em Phan, Tan Dat Vo, Sufficient condition for generalized synchronization in the networks of two ordinary differential equations of FitzHugh-Nagumo type with bidirectionally linear coupling , Dong Thap University Journal of Science: Vol. 12 No. 8 (2023): Natural Sciences Issue (Vietnamese)
- Van Long Em Phan, Synchronization in complete networks of reaction-diffusion equations of Fitzhugh-Nagumo wiht spiral solutions , Dong Thap University Journal of Science: No. 37 (2019): Part B - Natural Sciences
- TS. Van Long Em Phan, Sinh viên Tan Dat Nguyen, Sinh viên Minh Phuc Nguyen, Sinh viên Thi Ngoc Lan Nguyen, Identical synchronization controller between the Hindmarsh -Rose 2D and the FitzHugh-Nagumo type model , Dong Thap University Journal of Science: Vol. 13 No. 8 (2024): Natural Sciences Issue (Vietnamese)