Bioaugmentation with bacterial strains for enhanced degradation of acetochlor and bensulfuron-methyl in contaminated water and soil

Thi Thanh Chung Nguyen1, Quang Dang Tran2, Thi Cam Tu Tran3, Dat Huy Tran3, Danh Duc Ha3,
1 Vinh Medical University, 161 Nguyen Phong Sac street, Vinh city, Nghe An province,Vietnam
2 Mien Tay Construction University, 20B Pho Co Dieu street, Vinh Long city, Vinh Long province, Vietnam
3 Dong Thap University, 783 Pham Huu Lau street, Dong Thap province, Cao Lanh 870000, Vietnam

Main Article Content

Abstract

Acetochlor and bensulfuron-methyl are the main ingredients of herbicides used worldwide. This study evaluated the contamination of these compounds in water and soil samples collected from a paddy field, and their dissipation in the field and under a laboratory condition. The results showed that the concentrations of acetochlor and bensulfuron-methyl in water were 683.5±71.5 µg/L and 131.6±14.4 µg/L, respectively, while the soil data were 343.3±34.2 µg/L and 98.4±9.2 µg/L. The average concentrations of acetochlor and bensulfuron-methyl were dissipated by about 92.4% and 89.6% in water, and 86.8% and 91.0% in soil in the field after 30 days, respectively. These compound dissipations at the field site were higher compared to those under a laboratory condition. Fortunately, the inoculation of acetochlor degrading bacteria (Pseudomonas fluorescens KT3 and Bacillus subtilis 2M6E) and a bensulfuron-methyl degrading bacterial strain (Methylopila sp. DKT) increased the degradation process under the laboratory condition. This study, therefore, provides valuable information on the contamination of acetochlor and bensulfuron-methyl in water and soil, the dissipation of these compounds at the site and the roles of isolated bacteria in enhancing the degradation.

Article Details

References

An, W., Sang, C., Jensen, K. M., Sørensen, P. B., Zhang, B., & Yang M. (2021). Application of the health risk assessment of acetochlor in the development of water quality criteria. J Environ Sci, 110, 48-54.
Ashby J., Tinwell H., Lefevre P. A., Williams J., Kier L., Adler I. D., & Clapp M. J. L. (1997). Evaluation of the mutagenicity of acetochlor to male rat germ cells. Mutat Res, 393, 263-281.
Coyner, A., Gupta, G., & Jones, T. (2001). Effect of chlorsulfuron on growth of submerged aquatic macrophyte Potamogeton pectinatus (sago pondweed). Environ Pollut, 111(3), 453-455. https://doi.org/10.1016/S0269-7491(00)00084-1
Crump, D., Werry, K., Veldhoen, N., Van Aggelen, G., & Helbing, C. C. (2002). Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus laevis. Environ Health Perspect, 110, 1199-1205.
Delgado-Moreno, L., Sanchez, L., Castillo, A., Pot, V., & Pena, A. (2007). Behavior of bensulfuron-methyl in an agricultural alkaline soil. J Environ Sci Health B, 42(3), 241-248.
Duc, H. D., & Oanh, N. T. (2019). Biodegradation of acetochlor and 2-methyl-6-ethylaniline by Bacillus subtilis and Pseudomonas fluorescens. Microbiology, 88, 729-738. https://doi.org/10.1134/S0026261719060031
Duc, H. D., & Oanh, N. T. (2024). Pymetrozine degradation by an enrichment culture from paddy soil. Microbiology, 93, 324-332. https://doi.org/10.1134/S002626172360249X
Duc, H. D., Thuy, N. T. D., Truc, H. T. T., Nhu, N. T. H., & Oanh, N. T. (2020). Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol Lett, 367(18), fnaa151. https://doi.org/10.1093/femsle/fnaa151
Ha, D.D., & Nguyen, T.O. (2020). Application of Methylopila sp. DKT for Bensulfuron-methyl degradation and peanut crowth promotion. Curr Microbiol, 77, 1466-1475. https://doi.org/10.1007/s00284-020-01953-0
Hill, A. B., Jefferies, P. R., Quistad, G. B., & Casida, J. E. (1997). Dialkylquinoneimine metabolites of chloroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes. Mutat Res, 395, 159-171.
Janniche, G. S., Mouvet, C., & Albrechtsen, H. J. (2010). Acetochlor sorption and degradation in limestone subsurface and aquifers. Pest Manage Sci, 66, 1287-1297.
Kolpin, D.W., Goolsby, D.A., & Thurman, E.M. (1996). Acetochlor in the hydrologic system in the midwestern United States 1994. Environ Sci Technol, 30, 459-464
Kotoula-Syka, E., Hatzios, K.K., Berry, D.F., & Wilson, H. P. (1997). Degradation of acetanilide herbicides in history and nonhistory soils from Eastern Virginia. Weed Technology, 11(3), 403-409.
Li, W., Zha, J. M., Li, Z. L., Yang, L. H., & Wang, Z. J. (2009). Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus). Aquat Toxicol, 94, 87-93.
Lin, X. Y., Yang, Y. Y., Zhao, Y. H., & Fu, Q. L. (2012). Biodegradation of bensulfuron-methyl and its effect on bacterial community in paddy soils. Ecotoxicology, 21(5), 1281-1290. https://doi.org/10.1007/s10646-012-0882-7.
Loor-Vela, S. X., Crawford Simmons, J. J., Simmons, F. W., & Raskin, L. (2003). Dissipation of [14C]acetochlor herbicide under anaerobic aquatic conditions in flooded soil microcosms. J Agric Food Chem, 51(23), 6767-6773.
Mueller, M.D., & Buser, H-R. (1995). Environmental behavior of acetamide pesticide stereoisomers. 2. stereo- and enantioselective degradation in sewage sludge and soil. Environ Sci Technol, 29(8), 2031-2037.
Mueller, T.C., Shaw, D.R., & Witt, W.W. (1999). Relative dissipation of acetochlor, alachlor, metolachlor, and SAN 582 from three surface soils. Weed Technology, 13(2), 341-346.
Nguyen Thanh Hung, Tran Ngoc Chau, Nguyen Thi Thuy, & Ha Danh Duc. (2022). Increased degradation of acetochlor in soil by mixed culture of P. fluorescens KT3 and B. subtilis 2M6E. Dong Thap University, Journal of Science, Natural Sciences issue, 11(5), 60-67.
Okamoto, Y., Fisher, R. L., Armbrust, K. L., & Peter, C. J. (1998). Surface water monitoring survey for bensulfuron methyl applied in paddy fields. J Pestic Sci, 23(3), 235–240.
Pareja, L., Martinez-Bueno, M. J., Cesio, V., Heinzen, H., & Fernandez-Alba, A. R. (2011). Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A, 1218(30), 4790-4798.
Pérez-Bárcena, J.F., Ahuatzi-Chacón, D., CastilloMartínez, K.L., Ruiz-Ordaz, N., Galíndez-Mayer, J., Juárez-Ramírez, C., & Ramos-Monroy, O. (2014). Effect of herbicide adjuvants on the biodegradation rate of the methylthiotriazine herbicide prometryn. Biodegradation, 25, 405-415. https://doi.org/10.1007/s10532-013-9669-7
Roberts, T.R., Hutson, D.H., Lee, P.W., Nicholls, P.H., & Plimmer J.R. (1998). Metabolic pathways of agrochemicals: Part 1: Herbicides and Plant Growth Regulators. Cambridge, Royal Society of Chemistry, Thomas Graham House, 483-487.
San Juan, M.F., Lavarías, S., Aparicio, V., Larsen, K.E., Colman Lerner, J.E., & Cortelezzi, A. (2023). Ecological risk assessment of pesticides in sediments of Pampean streams, Argentina. Chemosphere, 313, 137598.
Sun, X., Zhou, Q., Ren, W., Li, X., & Ren, L. (2011). Spatial and temporal distribution of acetochlor in sediments and riparian soils of the Songhua River Basin in northeastern China. J Environ Sci, 23, 1684-1690.
Thompson, D.G., Macdonald, L.M., & Staznik, B. (1992). Persistence of hexazinone and metsulfuron-methyl in a mixed-wood/boreal forest lake. J Agric Food Chem, 40(8), 1444-1449.
Wang, W., Man, Y., Xie, Zhang, J.Z., Wang, P., & Liu X. (2023). Occurrence and risk assessment of three chloroamide herbicides in water and soil environment in northeastern, eastern and southern China. Environ Res, 219, 115104
Wang, X., Tang, L., Yang, T., Shi, Y., Liu, F., & Jiang, H. (2023). Remediation of bensulfuron methyl polluted water and soil by Fe2O3/Fe3O4@C activating peroxymonosulfate: chloride enhancement effect and phytotoxicity assessment. Chem Eng J, 474, 145439. https://doi.org/10.1016/j.cej.2023.145439.
Xiao, N., Jing, B., Ge, F., & Liu, X. (2006). The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere, 62, 1366-1373.
Yang, D., Huo, J., Zhang, Z., An, Z., Dong, H., Wang, Y., Duan, W., Chen, L., He, M., Gao, S., & Zhang, J. (2023). Citric acid modified ultrasmall copper peroxide nanozyme for in situ remediation of environmental sulfonylurea herbicide contamination. J Hazard Mater, 443, 130265. https://doi.org/10.1016/j.jhazmat.2022.130265.
Ye, C. (2003). Environmental behavior of the herbicide acetochlor in soil. Bull Environ Contam Toxicol, 71, 919-923.
Zhang, H., Qian, Y., Fan, D., Tian, Y., & Huang, X. (2022). Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuronmethyl residues to maize. Environ Pollut, 292, 118366. https://doi.org/10.1016/j.envpol.2021.118366

Most read articles by the same author(s)