Producing adsorbents of cellulose nanocrytals - alginate hydrogel beads for efficient removal of dye in water

Nang An Vu1, , Thi Hong Hoa Vo2, Van Hieu Le1
1 Viet Nam National University, Ho Chi Minh City University of Science, Vietnam
2 Student, Viet Nam National University, Ho Chi Minh City University of Science, Vietnam

Main Article Content

Abstract

In this study, recyclable adsorbentsmade of nanocellulose and alginate were developed. Nanocellulose wasobtained by acid hydrolysis of cellulose, isolated from sugarcane bagasse (SCB). TEM analysis showed that the obtained nanocellulose was rod-like in structure with high aspect ratio. Nanocellulose - alginate hydrogel beads were prepared by an ionotropic gelation method using Ca2+ ions. The adsorption behavior of  methylene blue by  spherical (nanocellulose - alginate) hydrogel  beads was  studied  by  varying  the  initial  dye  concentrations, contact time, and adsorbent dosage. These hydrogel beads displayed an improved adsorption capacitycompared to the pure alginate hydrogel.

Article Details

References

Batmaz, R., Mohammed, N., Zaman, M., Minhas, G., Berry, R. M., & Tam, K. C. (2014). Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 21(3), 1655-1665.
Chatterjee, S., Chatterjee, S., Chatterjee, B., Das, A., & Guha, A. (2005). Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. Journal of Colloid and Interface Science, (288), 30-35.
Chatterjee, S., Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1), 146-152.
Fan, J., Shi, Z., Lian, M., Li, H., & Yin, J. (2013). Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity, Journal of Materials Chemistry A, 1(25), 7433-7443.
Fekete, T., Borsa, J., Takács, E., & Wojnárovits, L. (2017). Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chemistry Central Journal, 11, 1-10.
Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18(25), 9765-9770.
Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G., ... & Peng, H. (2016). Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, 151, 716-724.
Mahfoudhi, N., & Boufi, S. (2017). Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 24, 1171-1197.
Mohammed, N., Grishkewich, N., Berry, R. M., & Tam, K. C. (2015). Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose, 22, 3725-3738.
Ngah, W. W., Endud, C. S., & Mayanar, R. (2002). Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 50(2), 181-190.
Oun, A. A., & Rhim, J. W. (2016). Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187-200.
Rocher, V., Bee, A., Siaugue, J. M., & Cabuil, V. (2010). Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. Journal of Hazardous Materials, 178(1-3), 434-439.
Sharma, P., Kaur, H., Sharma, M., & Sahore, V. (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment, 183, 151-195.
Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In IOP conference series: materials science and engineering (Vol. 107, No. 1, p. 012045). IOP Publishing.
Xing, L., Gu, J., Zhang, W., Tu, D., & Hu, C. (2018). Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydrate polymers, 192, 184-192.
Yoshida, H., & Takemori, T. (1997). Adsorption of direct dye on cross-linked chitosan fiber: breakthrough curve. Water Science and Technology, 35(7), 29-37.
Zhao, L., & Mitomo, H. (2008). Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM‐cellulose hydrogels synthesized by irradiation. Journal of Applied Polymer Science, 110(3), 1388-1395.