Chromatic number, chromatic polynomials and chromatically unique for K2r

Xuan Hung Le

Main Article Content

Abstract

One of the fundamental issues in graph theory is the graph-coloring problem. In particular, it is to determine the chromatic number, chromatic polynomials of graphs and to characterize chromatically unique graphs. In this paper, we determine the chromatic number, chromatic polynomials and characterize chromatically unique for K2 r.

Article Details

References

[1]. M. Behazad and G. Chartrand and J. Cooper (1967), “The coloring numbers of complete Graphs”, J. London Math. Soc., (42), p. 226-228.
[2]. J. C. Bermond (1974), “Nombre chromatique total du graph r-parti complete”, J. London Math. Soc., 9 (2), p. 279-285.
[3]. G. D. Birkhoff (1912), “A determinant formula for the number of ways of coloring a map”, Annals of Math, 14 (2), p. 42-46.
[4]. B. Bollobás (1979), Graph theory: an introductory course, Springer – Verlag. New York, Heidelberg, Berlin.
[5]. D. G. Hoffman and C. A. Roger (1992), “The chromatic index of complete multipartite graphs”, Journal of Graph Theory, (16), p. 159-163.
[6]. Lê Xuân Hùng (2014), “Sắc số, đa thức tô màu và tính duy nhất tô màu của đồ thị tách cực”, Tạp chí Khoa học và Giáo dục, Trường Đại học Sư phạm, Đại học Đà Nẵng, số 13(04), tr. 23-27.
[7]. K. M. Koh and K. L. Teo (1990), “The search for chromatically unique graphs”, Graphs Combin., 6 (3), p. 259-285.
[8]. K. M. Koh and K. L. Teo (1997), “The search for chromatically unique graphs II”, Discrete Math., (172), p. 59-78.
[9]. R. C. Read (1968), “An introduction to chromatic polynomials”, J. Combin. Theory, 4 (1), p. 52-71.
[10]. R. C. Read (1987), “Connectivity and chromatic uniqueness”, Ars Combin., (23), p. 209-218.