Degradation of thiobencarb and propanil in an herbicide and their effects on bacterial community in soil

Thi Thanh Thuy Huynh1,2, Thanh Hung Nguyen1,2, Ngoc Chau Tran1,2, Danh Duc Ha3,
1 An Giang University, Vietnam National University Ho Chi Minh City, Vietnam
2 Vietnam National University Ho Chi Minh City, Vietnam
3 Faculty of Agriculture and Environment Resources, Dong Thap University, Vietnam

Main Article Content

Abstract

Diuron has been widely applied to control weeds causing serious environmental pollution. In the current study, the mixed culture of three bacterial isolates, Bacillus subtilis DU1, Acinetobacter baumannii DU, and Pseudomonas sp. DUK, was investigated for diuron degradation in a packed reactor and soil. The immobilization of the bacteria mixture in rice straw increased the degradation. The specific degradation rates of diuron by bacteria immobilized in rice straw in batch cultures increased from 0.38 ± 0.03 mg/L at the first cycle to 0.98 ± 0.10 mg/L at the fourth cycle. The degradation using the reactor was also carried out in a continuous operation. Moreover, the introduction of bacteria into soil increased diuron degradation. This study shows the potential of diuron degradation in the reactor and in soil using the mixed bacterial culture immobilized in rice straw.

Article Details

References

Amin, N. M., Kaneco, S., Kato, T., Katsumata, H., Suzuki, T., & Ohta, K. (2008). Removal of thiobencarb in aqueous solution by zero valent iron. Chemosphere, 70(3), 511-515. DOI: 10.1016/j.chemosphere.2007.09.017.
Bhowmick, S., Das, R., & Das, A. C. (2014). Effect of thiobencarb and pretilachlor on microorganisms in relation to mineralization of C and N in the Gangetic alluvial soil of West Bengal. Environ Monit Assess, 186(10), 6849-6856. DOI: 10.1007/s10661-014-3893-4.
Cashman, J. R., Olsen, L. D., Nishioka, R. S., Gray, E. S., & Bern, H. A. (1990). S-oxygenation of thiobencarb (Bolero) in hepatic preparations from striped bass (Morone saxatilis) and mammalian systems. Chem Res Toxicol, 3(5), 433-440. DOI: 10.1021/tx00017a008.
Cox, C., & Surgan, M. (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Persp, 114(12), 1803-1806. DOI: 10.1289/ehp.9374.
Doran, G., Eberbach, P., & Helliwell, S. (2006). The sorption and degradation of the rice pesticides fipronil and thiobencarb on two Australian rice soils. Aust J Soil Res, 44(6), 599-610. DOI: 10.1071/sr05173.
Duc, H. D., Thuy, N. T. D., Truc, H. T. T., Nhu, N. T. H., & Oanh, N. T. (2020). Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol Lett, 367(18), fnaa151. DOI: 10.1093/femsle/fnaa151.
Fernández-Vega, C., Sancho, E., Ferrando, M.D., & Andreu, E. (2002). Thiobencarb-induced changes in acetylcholinesterase activity of the fish Anguilla Anguilla. Pestic Biochem Physiol, 72(1), 55-63. DOI: 10.1006/pest.2001.2581.
Haller, W. T., & Stocker, R. K. (2003). Toxicity of 19 adjuvants to juvenile Lepomis macrochirus (bluegill sunfish). Environ Toxicol Chem, 22(3), 615-619. DOI: 10.1002/etc.5620220321.
Huynh, T. T. T., Ha, D. D., Nguyen, T. H., & Tran, N. C. (2022). Effects of thiobencarb on bacteria and fungi in soil and degradation of thiobencarb in soil. Journal of Science and Technology, the University of Da Dang, 20(11.1), 19-22. DOI: 10.15625/2615-9023/16668.
Jena, P. K., Adhya, T. K., & Rao, V. R. (1990). Nitrogen-fixing bacterial populations as influenced by butachlor and thiobencarb in rice soils. Zentralbl Mikrobiol, 145(6), 469-474. DOI: 10.1016/s0232-4393(11)80165-4.
Kanawi, E., Van Scoy, A. R., Budd, R., & Tjeerdema, R. S. (2016). Environmental fate and ecotoxicology of propanil: a review. Toxicol Environ Chem, 98(7), 689-704. DOI: 10.1080/02772248.2015.1133816.
Mahmoudi, M., Rahnemaie, R., Soufizadeh, S., Malakouti, M. J., & Eshaghi, A. (2011). Residual effect of thiobencarb and oxadiargyl on spinachand lettuce in rotation with rice. J Agric Sci Technol, 13(5), 785-794.
Moon, Y. H., & Kuwatsuka, S. (1984). Properties and conditions of soils causing the dechlorination of the herbicide benthiocarb (thiobencarb) in flooded soils. J Pesticide Sci, 9(4), 745-754. DOI: 10.1584/jpestics.9.745.
Nakamura, Y., Ishikawa, K., & Kuwatsuka, S. (1977). Degradation of benthiocarb in soils as affected by soil conditions. J Pestic Sci, 2, 7-16. DOI: 10.1584/jpestics.2.7.
Oanh, N. T., & Duc, H. D. (2022). Enhanced anaerobic degradation of thiobencarb using a horizontal-flow anaerobic immobilized biomass bioreactor. FEMS Microbiol Lett, 368(21-24), fnac001. DOI: 10.1093/femsle/fnac001.
Pérez-Bárcena, J. F., Ahuatzi-Chacón, D., Castillo-Martínez, K. L., Ruiz-Ordaz, N., Galíndez-Mayer, J., Juárez-Ramírez, C., & Ramos-Monroy, O. (2014). Effect of herbicide adjuvants on the biodegradation rate of the methylthiotriazine herbicide prometryn. Biodegradation, 25(3), 405-415. DOI: 10.1007/s10532-013-9669-7.
Sapari, P., & Ismail, B. S. (2012). Pollution levels of thiobencarb, propanil, and pretilachlor in rice fields of the muda irrigation scheme, Kedah, Malaysia. Environ Monit Assess, 184(10), 6347-6356. DOI: 10.1007/s10661-011-2424-9.
Sato, K. (1989). Effect of the herbicide, benthiocarb (thiobencarb) on seasonal changes in microbial populations in paddy soil and yield of rice plants. Developments in Soil Science, 18, 335-342. DOI: 10.1016/s0166-2481(08)70234-4.
Smith, R. J. (1981). Herbicide programs for weed control in rice. Science and Education Administration, U.S Department of Agriculture.
Tanetani, Y., Kaku, K., Ikeda, M., & Shimizu, T. (2013). Action mechanism of a herbicide, thiobencarb. J Pestic Sci, 38(1), 39-43. DOI: 10.1584/jpestics.d12-047.
Toan, P. V., Sebesvari, Z., Bläsing, M., Rosendahl, I., & Renaud, F. G. (2013). Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci Total Environ, 452-453, 28-39. DOI: 10.1016/j.scitotenv.2013.02.026.

Most read articles by the same author(s)