Long wavelength approximation analytical plasmon frequency in BLG – GaAs heterosructure
Main Article Content
Abstract
Analytical results for plasmon excitations are quite unpopular because of the complicated polarizality functions. This paper presents the analytical calculations for plasmon frequencies in long wavelength limit of a double layer made of bilayer graphene and GaAs quantum well. Calculations are done with taking account of electron gas layer thickness and background dielectric constants inhomogeneity, based on polarizality functions in random phase approximation. Results illustrate that the optical frequency is similar to that obtained in previous researches, while the acoustic one is affected by both the distance between two layers and 2DEG layer thickness.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Analytical, bilayer graphene, plasmon excitation
References
[2]. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim A. K. (2009), “The eletronic properties of graphene”, Rev. Mod. Phys, (81), p. 109.
[3]. Czachora, A., Holas, A., Sharma, S. R., and Singwi, K. S. (1982), “Dynamical correlations in a two-dimensional electron gas: First-order perturbation theory”, Phys. Rev. B, (25), p. 2144.
[4]. Digish K. Patel (2015), Transport properties of monolayer and bilayer graphene, Doctoral thesis, The Maharaja Sayajirao University Of Baroda, India.
[5]. Hwang, E. H. and Sarma, S. D. (2007), “Dielectric function, screening, and plasmons in 2D graphene”, Physical Review B, (75), p. 205418.
[6]. Hwang, E. H. & Sarma, S. D. (2009), “Exotic plasmon modes of double layer graphene”, Phys. Rev. B, (80), p. 205405
[7]. Nguyen Van Men and Nguyen Quoc Khanh (2017), “Plasmon modes in graphene–GaAs heterostructures”, Physics Letters A, (381), p. 3779
[8]. Principi, A., Carrega, M., Asgari, R., Pellegrini, V., and Polini, M. (2012), “Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems”, Phys. Rev. B, (86), p. 085421.
[9]. Sarma, S. D., Adam, S., Hwang, E. H., and Rossi, E. (2011), “Electronic transport in two dimensional graphene”, Rev. Mod. Phys. (83), p. 407.
[10]. Sarma, S. D., Hwang, E. H., and Rossi, E. (2010), “Theory of carrier transport in bilayer grapheme”, Phys. Rev. B, (81), p. 161407.
[11]. Sarma, S. D. and Madhukar, A. (1981), “Collective modes Spatially Separated”, Phys. Rev. B, (23), p. 805.
[12]. Scharf, B. and Matos-Abiague, A. (2012), “Coulomb drag between massless and massive fermions”, Phys. Rev. B, (86), p. 115425.
[13]. Sensarma, R., Hwang, E. H., and Sarma, S. D. (2011), “Dynamic screening and low energy collective modes in bilayer graphene”, Phys. Rev. B, (82), p. 195428.
[14]. Stern, F. (1967), “Polarizability of a two-dimensional electron gas”, Phys. Rev. Lett. (18), p. 546.
[15]. Hồ Sỹ Tá (2017), Các đặc trưng plasmon và tính chất động lực học của hệ điện tử trong graphene, Luận án tiến sĩ, Trường Đại học Bách khoa Hà Nội, Việt Nam.
[16]. Dinh Van Tuan and Nguyen Quoc Khanh (2013), “Plasmon modes of double-layer graphene at finite temperature”, Physica E, (54), p. 267-272.
[17]. Vazifehshenas, T., Amlaki, T., Farmanbar, M., and Parhizgar, F. (2010), “Temperature effect on plasmon dispersions in double-layer graphene systems”, Physics Letters A, (374), p. 4899-4903.
Most read articles by the same author(s)
- Thi Kim Phuong Dong, Van Men Nguyen, The effects of circle-method in finding solutions for mechanical oscillation and wave problems , Dong Thap University Journal of Science: No. 34 (2018): Part A - Social Sciences and Humanities
- Van Men Nguyen, Thi Kim Phuong Dang, Minh Rang Truong, Plasmon modes in three-layer graphene with inhomogeneous background dielectric , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Van Men Nguyen, Coulomb bare interaction in three-layer graphene , Dong Thap University Journal of Science: No. 39 (2019): Part B - Natural Sciences