Synchronization in complete networks of ordinary differential equations of Fitzhugh – Nagumo type with nonlinear coupling

Van Long Em Phan1,
1 An Giang University, Vietnam National University Ho Chi Minh City, Vietnam

Main Article Content

Abstract

Synchronization is a ubiquitous feature in many natural systems and nonlinear science. This paper studies the synchronization in a complete network consisting of n nodes. Each node is connected to all other nodes by nonlinear coupling and represented by an ordinary differential system of FitzHugh-Nagumo type (FHN) which can be obtained by simplifying the famous Hodgkin-Huxley model. From this complete network, a sufficient condition on the coupling strength is identified to achieve the synchronization. The result shows that the networks with bigger in-degrees of the nodes synchronize more easily. The paper also shows this theoretical result numerically and see that there is a compromise.

Article Details

References

Ambrosio, B. (2009). Propagation d'ondes dans un milieu excitable: simulations numériques et approche analytique. Thesis, University Pierre and Marie Curie- Paris 6, France.
Ambrosio, B., & Aziz-Alaoui, M. A. (2012). Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type. Computers and Mathematics with Application, (64), 934-943.
Ambrosio, B., & Aziz-Alaoui, M. A. (2013). Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type. ESAIM: Proceedings, (39), 15-24.
Aziz-Alaoui, M. A. (2006). Synchronization of Chaos. Encyclopedia of Mathematical Physics, Elsevier, (5), 213-226.
Ambrosio, B., Aziz-Alaoui, M. A., & Phan, V. L. E. (2018). Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and continuous dynamical systems series B, (23), 3787-3797.
Belykh, I., De Lange, E., & Hasler, M. (2005). Synchronization of bursting neurons: What matters in the network topology. Phys. Rev. Lett., (94), 188101.
Corson, N. (2009). Dynamique d'un modèle neuronal, synchronisation et complexité. Thesis, University of Le Havre, France.
Ermentrout, G. B., & Terman, D. H. (2009). Mathematical foundations of neurosciences, Interdisciplinary Applied Mathematics, Springer.
Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol., (43), 867-896.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and ts application to conduction and excitation in nerve. J. Physiol., (117), 500-544.
Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Computational Neuroscience Series, Poggio The MIT Press, Cambridge.
Keener, J. P., & Sneyd, J. (2009). Mathematical Physiology: Systems Physiology, Second Edition. Antman S.S., Marsden J.E., and Sirovich L. Springer.
Murray, J. D. (2002). Mathematical Biology. I. An Introduction, Third Edition. Springer.
Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE., (50), 2061-2070.
Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization, A Universal Concept in Nonlinear Science. Cambridge: Cambridge University Press.