Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi thiết lập và chứng minh một số định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b-mêtric thứ tự bộ phận. Các kết quả này là sự mở rộng của các kết quả chính trong [5]. Đồng thời, chúng tôi xây dựng một số ví dụ minh họa cho kết quả đạt được.
Từ khóa
điểm bất động kép, ánh xạ co suy rộng, không gian b-mêtric
Chi tiết bài viết

Bài báo này được cấp phép theo Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
[1]. G. Bhaskar and V. Lakshmikantham (2006), “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65, pp. 1379-1393.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Trung Hiếu, Nguyễn Thị Kim Tuyến, Thiết kế tình huống dạy học chương phân số theo hướng phát triển năng lực giao tiếp Toán học cho học sinh lớp 6 , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 06S (2025): Số Đặc biệt chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Trung Hiếu, Lê Thị Phương Thảo, Thiết kế tình huống dạy học theo hướng phát triển năng lực tư duy và lập luận toán học trong dạy học chủ đề Phương trình – Toán 8 , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 07S (2025): Số Đặc biệt chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)