Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi thiết lập và chứng minh một số định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b-mêtric thứ tự bộ phận. Các kết quả này là sự mở rộng của các kết quả chính trong [5]. Đồng thời, chúng tôi xây dựng một số ví dụ minh họa cho kết quả đạt được.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
điểm bất động kép, ánh xạ co suy rộng, không gian b-mêtric
Tài liệu tham khảo
[1]. G. Bhaskar and V. Lakshmikantham (2006), “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65, pp. 1379-1393.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Trung Hiếu, Lê Thị Chắc, Định lí điểm bất động chung của ánh xạ (ψ,S, C)-co yếu tổng quát trong không gian 2-metric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 22 (2016): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Định lý điểm bất động với điều kiện co hữu tỉ trong không gian mêtric chữ nhật sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 12 (2015): Phần B - Khoa học Tự nhiên
- Trương Cẩm Tiên, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hỗn hợp cho bài toán cân bằng và ánh xạ thỏa mãn điều kiện (ø-Eµ) trong không gian banach trơn đều và lồi đều , Tạp chí Khoa học Đại học Đồng Tháp: Số 27 (2017): Phần B - Khoa học Tự nhiên
- Cao Phạm Cẩm Tú, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hai bước đến điểm bất động chung của hai ánh xạ G-không giãn tiệm cận trong không gian Banach với đồ thị , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 3 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Huynh Thi Be Trang, Nguyen Trung Hieu, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 5 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Nguyễn Trung Hiếu, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Tạp chí Khoa học Đại học Đồng Tháp: Số 3 (2013): Phần B - Khoa học Tự nhiên
- Huỳnh Ngọc Cảm, Nguyễn Thành Nghĩa, Võ Đức Thịnh, Tập đóng suy rộng và tập mở suy rộng trong không gian tôpô , Tạp chí Khoa học Đại học Đồng Tháp: Số 3 (2013): Phần B - Khoa học Tự nhiên
- Huỳnh Diễm Ngọc, Nguyễn Trung Hiếu, Sự hội tụ của thuật toán lai ghép cho ánh xạ α-không giãn trong không gian Hilbert , Tạp chí Khoa học Đại học Đồng Tháp: Số 25 (2017): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hồ Quốc Ái, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hoàng Hiền Hưởng, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 8 (2014): Phần B - Khoa học Tự nhiên