Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận
Main Article Content
Abstract
In this paper, we construct and prove a number of coupled fixed point theorems for generalized contraction mappings on partially ordered b-metric spaces. These results are modifications to the main findings reported in [5]. Also, some examples are given to illustrate the obtained results.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
coupled fixed point, generalized contraction mappings, b-metric spaces
References
[1]. G. Bhaskar and V. Lakshmikantham (2006), “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65, pp. 1379-1393.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
[2]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b -metric spaces”, Int. J. Mod. Math. 4(3), pp. 285-301.
[3]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46(2), pp. 263-276.
[4]. V. Lakshmikantham and L. Ciric (2009), “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70, pp. 4341-4349.
[5]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74, pp. 983-992.
[6]. M. Mursaleen, A. Mohiuddine and P. Agarwal (2012), “Coupled fxed point theorems for ± - È -contractive type mappings in partially ordered metric spaces”, Fixed Point Theory Appl., 2012:228, 11 pages.
[7]. V. Parvaneh, J. R. Roshan and S. Radenovic (2013), “Existence of tripled coincidence points in ordered b -metric spaces and an application to a system of integral equations”, Fixed Point Theory Appl., 2013:130, 19 pages.
[8]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., 2013:159, 23 pages.
[9]. B. Samet, C. Vetro and P. Vetro (2012), “Fixed point theorems for ± - È -contractive type mappings”, Nonlinear Anal., 75, pp. 2154 -2165.
[10]. W. Shatanawi, B. Samet and M. Abbas (2012), “Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces”, Math. Comput. Modelling, 55, pp. 680-687.
Most read articles by the same author(s)
- Trung Hieu Nguyen, Thi Chac Le, Common fixed point theorems for generalized weak -contraction mappings in partially ordered 2 -metric spaces , Dong Thap University Journal of Science: No. 22 (2016): Part B - Natural Sciences
- Trung Hieu Nguyen, Fixed point theorems for contractions of rational type in ordered rectangular metric spaces , Dong Thap University Journal of Science: No. 12 (2015): Part B - Natural Sciences
- Cam Tien Truong, Trung Hieu Nguyen, Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces , Dong Thap University Journal of Science: No. 27 (2017): Part B - Natural Sciences
- Pham Cam Tu Cao, Trung Hieu Nguyen, Convergence of a two-step iteration process to common fixed points of two asymptotically g-nonexpansive mappings in Banach spaces with graphs , Dong Thap University Journal of Science: Vol. 9 No. 3 (2020): Natural Sciences Issue (Vietnamese)
- Thi Be Trang Huynh, Trung Hieu Nguyen, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Trung Hieu Nguyen, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Ngoc Cam Huynh, Thanh Nghia Nguyen, Duc Thinh Vo, Tập đóng suy rộng và tập mở suy rộng trong không gian tôpô , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Diem Ngoc Huynh, Trung Hieu Nguyen, Covergence of hybrid algorithms for α-nonexpansive mappings in Hilbert spaces , Dong Thap University Journal of Science: No. 25 (2017): Part B - Natural Sciences
- Trung Hieu Nguyen, Quoc Ai Ho, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Hien Huong Hoang, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Dong Thap University Journal of Science: No. 8 (2014): Part B - Natural Sciences