Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces

Cam Tien Truong1, Trung Hieu Nguyen2
1 Student, Dong Thap University
2 Dong Thap University

Main Article Content

Abstract

In this paper, we introduce the notion of a mapping satisfying condition (ø-Eµ) in smooth Banach spaces, and propose a hybrid iteration for finding a common element of the solution set of an equilibrium problem and the fixed point set of a mapping satisfying condition (ø-Eµ) and also establish the convergence of this iteration in uniformly convex and uniformly smooth Banach spaces. These results are the generations of the main ones in [2] from Hilbert spaces to uniformly convex and uniformly smooth Banach spaces. We also provide an illustrated example for the obtained result.

Article Details

References

[1]. A. Alber (1996), “Metric and Generalized projection operators in Banach spaces: properties and applications”, In: Kartosator, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes in Pure and Applied Mathematics, p. 15-50, Dekker, New York.
[2]. S. Alizadeh and F. Moradlou (2016), “A strong convergence theorem for equilibrium problems and generalized hybrid mappings”, Mediterr. J. Math., 13 (1), p. 379-390.
[3]. E. Blum and W. Oettli (1994), “From optimization and variational inequalities to equilibrium problems”, Math. Stud., (63), p. 123-145.
[4]. Z. Fuhai and Y. Li (2012), “Halpern-type iterations for strong relatively nonexpansive multi-valued mappings in Banach spaces”, Stud. Math. Sci., 4 (2), p. 40-47.
[5]. J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki (2011), “Fixed point theory for a class of generalized nonexpansive mappings”, J. Math. Anal. Appl., 375 (1), p. 185-195.
[6]. D. V. Hieu, L. D. Muu, and P. K. Anh (2016), “Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings”, Numer. Algor., 73 (1), p. 197-217.
[7]. S. Kamimura and W. Takahashi (2002), “Strong convergence of a proximal-type algorithm in a Banach space”, SIAM J. Optim., 13 (3), p. 938-945.
[8]. X. Qin, Y. J. Cho, and S. M. Kang (2009), “Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces”, J. Comput. Appl. Math., (225), p. 20-30.
[9]. X. Qin, Y. J. Cho, S. M. Kang, and H. Zhou (2009), “Convergence of a modified Halpern-type iteration algorithm for quasi- nonexpansive mappings”, Appl. Math. Lett., (22), p. 1051-1055.
[10]. W. Takahashi and K. Zembayashi (2009), “Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces”, Nonlinear Anal., (70), p. 45-57.
[11]. H. K. Xu (1991), “Inequalities in Banach spaces with applications”, Nonlinear Anal., 16 (12), p. 1127-1138.

Most read articles by the same author(s)

1 2 3 > >>