Sự hội tụ của dãy lặp đến điểm bất động chung của hai ánh xạ tựa tiệm cận không giãn hoàn toàn Bregman trong không gian Banach phản xạ
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi giới thiệu một dãy lặp lai ghép và chứng minh sự hội tụ của dãy lặp này đến điểm bất động chung của hai ánh xạ tựa tiệm cận không giãn hoàn toàn Bregman trong không gian Banach phản xạ. Từ kết quả này, chúng tôi nhận được một số kết quả hội tụ của dãy lặp cho ánh xạ tựa tiệm cận không giãn Bregman, ánh xạ tựa -không giãn tiệm cận và ánh xạ tựa -tiệm cận không giãn hoàn toàn. Đồng thời, chúng tôi xây dựng ví dụ minh họa cho sự hội tụ của dãy lặp được giới thiệu.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Ánh xạ tựa tiệm cận không giãn hoàn toàn Bregman, khoảng cách Bregman, không gian Banach phản xạ
Tài liệu tham khảo
Butnariu, D., & Iusem, A. N. (2000). Totally Convex Functions For Fixed Points Computation And Infinite Dimensional Optimization,Applied Optimization, Vol. 40. Dordrecht: Kluwer Academic.
Butnariu, D., & Resmerita, E. (2006). Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal., 2006, 1-39.
Censor, Y., & Lent, A. (1981). An iterative row-action method for interval convex programming. J. Optim. Theory Appl., 34, 321-353.
Chang, S. S., Wang, L., Wang, X. R., & Chan, C. K. (2014). Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces. Appl. Math. Comput., 228, 38-48.
Kumam, W., Witthayarat, U., Kumam, P., Suantai, S., & Wattanawitoon, K. (2016). Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces. Optimization, 65(2), 265-280.
Kohsaka, F., & Takahashi, W. (2005). Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal., 6(3), 505-523.
Naraghirad, X., & Yao, J. C. (2013). Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2013(141), 1-43.
Ni, R., & Wen, C. (2018). Hybrid projection methods for Bregman totally quasi-D asymptotically nonexpansive mappings. Bull. Malays. Math. Sci. Soc., 41, 807-836.
Reich, S., & Sabach, S. (2010). Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim., 31, 22-44.
Reich, S., & Sabach, S. (2009). A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal.,10, 471-485.
Resmerita, E. (2004). On total convexity, Bregman projections and stability in Banach spaces, J. Nonlinear Convex Anal., 11, 1-16.
Sabach, S. (2011). Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J. Optim., 21, 1289-1308.
Zalinescu, Z. (2002). Convex Analysis In General Vector Spaces. River Xdge: World Scientific.
Zhu, S., & Huang, J. H. (2016). Strong convergence theorems for equilibrium problem and Bregman totally quasi-asymptotically nonexpansivemapping in Banach spaces. Acta Math. Sci. Ser. B. 36B(5),1433-1444.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Trung Hiếu, Trang phục của tín đồ đạo Bửu Sơn Kỳ Hương từ góc nhìn văn hóa – xã hội và môi trường tự nhiên , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 4 (2022): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Bích Như, Nguyễn Trung Hiếu, Nghiên cứu đánh giá sự hài lòng của sinh viên chuyên ngành sư phạm đối với hoạt động đào tạo ở Trường Cao đẳng Cộng đồng Sóc Trăng , Tạp chí Khoa học Đại học Đồng Tháp: Tập 10 Số 4 (2021): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Bích Như, Nguyễn Bích Trâm, Nguyễn Trung Hiếu, Đánh giá sự hài lòng của người học đối với hình thức học tập trực tuyến tại Trường Cao đẳng Cộng đồng Sóc Trăng , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 6 (2022): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Trung Hiếu, Nguyễn Bích Như, Ứng dụng Lý thuyết trắc nghiệm cổ điển trong phân tích câu hỏi trắc nghiệm khách quan , Tạp chí Khoa học Đại học Đồng Tháp: Số 35 (2018): Phần A - Khoa học Xã hội và Nhân văn
- Nguyễn Văn Dũng, Nguyễn Trung Hiếu, Võ Đức Thịnh, Công bố khoa học của Trường Đại học Đồng Tháp giai đoạn 2003-2013 và đề xuất một số định hướng , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần A - Khoa học Xã hội và Nhân văn
- Nguyễn Thành Nghĩa, Nguyễn Trung Hiếu, Định lí điểm bất động cho ánh xạ hầu co-(ψ ,ϕ) tổng quát trong không gian b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 14 (2015): Phần B - Khoa học Tự nhiên
- Phạm Ái Lam, Nguyễn Trung Hiếu, Sự tồn tại và xấp xỉ điểm bất động của ánh xạ đơn điệu thỏa mãn điều kiện (E) trong không gian Banach sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 31 (2018): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Lê Thị Chắc, Định lí điểm bất động chung của ánh xạ (ψ,S, C)-co yếu tổng quát trong không gian 2-metric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 22 (2016): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Định lý điểm bất động với điều kiện co hữu tỉ trong không gian mêtric chữ nhật sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 12 (2015): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Huỳnh Ngọc Cảm, Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận , Tạp chí Khoa học Đại học Đồng Tháp: Số 10 (2014): Phần B - Khoa học Tự nhiên