Điều kiện co ciric sưy rộng trong không gian b-metric

Nguyễn Văn Dũng1, , Nguyễn Thị Trúc Linh2
1 Khoa Sư phạm Toán - Tin, Trường Đại học Đồng Tháp, Việt Nam
2 Sinh viên, Khoa Sư phạm Toán - Tin, Trường Đại học Đồng Tháp, Việt Nam

Nội dung chính của bài viết

Tóm tắt

Trong bài viết này, chúng tôi mở rộng kiểu co Ciric trong không gian b-metric (Lu & cs., 2019) bằng cách thêm vào 4 số hạng ρ(T2x,x), ρ(T2x,Tx), ρ(T2x,y), ρ(T2x,Ty), để trở thành ρ(Tx,Ty) < λmax{ρ(x,y), ρ(x,Tx), ρ(y,Ty), ρ(x,Ty), ρ(Tx,y), ρ(T2x, x), ρ(T2x, Tx), ρ(T2x, y ), ρ(T2x, Ty)} trong đó W là không gian b-metric, T : W → W và x, y ∈ W.

Chi tiết bài viết

Tài liệu tham khảo

Amini-Harandi, A. (2014). Fixed point theory for quasi-contraction maps in b-metric spaces. Fixed Point Theory, 15, 351-358.
Banach, S. (1922). Sur les operations dans les ensembles abstraits et leurs applications aux equations integrates. Fund. Math., 3, 133-181.
Chatterjea, S. K. (1972). Fixed-point theorems. C.R. Acad. Bulgare Sc, 25, 727-730.
Ciric, L. B. (1974). A generalization of Banach’s contraction principle. Proc. Am. Math. Soc., 45, 267-273.
Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sent. Math. Fis.Univ. Modena, 46, 263-276.
Kannan, R. (1969). Some results on fixed point-II. Am. Math. Mon., 76, 405-408.
Karapinar, E., Kieu, P. C., & Tran, D. T. (2012). A generalization of Ciric quasicontractions. Abstr. Appl. Anal., 1-9.
Kumam, P., Dung, N. V., & Sitthithakemgkiet, K. (2015). A generalization of Ciric fixed point theorem. Filomat, 29(7), 1549-1556.
Lê, T. T. H. (2017). Khảo sát tính chất cùa không gian b-metric giá trị phức. Đề tài nghiên cứu khoa học của sinh viên, Khoa Sư phạm Toán-Tin, Trường Đại học Đồng Tháp.
Lu, N., He, F., & Du, W.-S. (2019). Fundamental questions and new counterexamples for b- metric spaces and Fatou property. Mathematics 7, 11, 1-15.
Nguyễn, V. D., & Nguyễn, C. T. (2014). Điểm cố định cho dạng ø-co yếu suy rộng trong không gian kiểu-metric. Tạp chí khoa học Trường Đại học An Giang, (3), 27-32.
Tran, V. A., Luong, V. T., & Nguyen, V. D. (2015). Stone-type theorem on b-metric spaces and applications. Topology Appl., 50, 185-186.