On hyperstability of generalized linear equations in several variables in quasi-normed spaces
Nội dung chính của bài viết
Tóm tắt
In this paper, we state and prove the hyperstability of generalized linear equations in several variables in quasi-normed spaces. As applications, we deduce some known results and some particular cases of generalized linear equations in several variables.
Từ khóa
Fixed point, linear equations in several variables, quasi-normed space
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
D. G. Bourgi. (1949). Approximately isometric and multiplicative transformations on continuous function rings, Duke Math J., (16), 385-397.
J. Brzdek, J. Chudziak, and Z. Piles. (2011). A fixed point approach to stability of functional equations. Nonlinear Anal., (74), 6728-6732.
N. V. Dung and V. T. L. Hang. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces.
J. Math. Anal. Appl., 462(1), 131-147.
D. H. Hyers. (1941). On the stability of the linear functional equation. Proc. Natl.
Acad. Sci. USA. (27), 222-224.
N. Kalton. (2003). Quasi-Banach spaces. In: W.B. Johnson, and J. Lindenstrauss (Eds.). Handbook of the Geometry of Banach Spaces. Elsevier, Amsterdam. (2), 1099-1130.
N. J. Kalton, N. T. Peck, and J. W. Roberts. (1984). An F-space sampler. London mathematical society lecture note series, Cambridge University Press. (89), 15-32.
L. Maligranda. (2008). Tosio Aoki (1910- 1989). In International symposium on Banach and Function Spaces II.
Yokohama Publishers, Yokohama. 1-23.
G. Maksa and Z. Pales. (2001). Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyhazi. (NS). (17), 107-112.
S. M. Ulam. (1964). Problems in Modern Mathematics. Wiley, New York.
D. Zhang. (2015). On hyperstability of generalised linear equation in several variables. Bull. Aust. Math. Soc., (92), 259-267.
J. Brzdek, J. Chudziak, and Z. Piles. (2011). A fixed point approach to stability of functional equations. Nonlinear Anal., (74), 6728-6732.
N. V. Dung and V. T. L. Hang. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces.
J. Math. Anal. Appl., 462(1), 131-147.
D. H. Hyers. (1941). On the stability of the linear functional equation. Proc. Natl.
Acad. Sci. USA. (27), 222-224.
N. Kalton. (2003). Quasi-Banach spaces. In: W.B. Johnson, and J. Lindenstrauss (Eds.). Handbook of the Geometry of Banach Spaces. Elsevier, Amsterdam. (2), 1099-1130.
N. J. Kalton, N. T. Peck, and J. W. Roberts. (1984). An F-space sampler. London mathematical society lecture note series, Cambridge University Press. (89), 15-32.
L. Maligranda. (2008). Tosio Aoki (1910- 1989). In International symposium on Banach and Function Spaces II.
Yokohama Publishers, Yokohama. 1-23.
G. Maksa and Z. Pales. (2001). Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyhazi. (NS). (17), 107-112.
S. M. Ulam. (1964). Problems in Modern Mathematics. Wiley, New York.
D. Zhang. (2015). On hyperstability of generalised linear equation in several variables. Bull. Aust. Math. Soc., (92), 259-267.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Văn Dũng, Nguyễn Thị Tuyết Trinh, Về metric sinh bởi tựa metric riêng , Tạp chí Khoa học Đại học Đồng Tháp: Tập 12 Số 2 (2023): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Nguyễn Văn Dũng, Huỳnh Trần Trúc Duyên, Dạy học chủ đề tam giác cho học sinh lớp 7 bằng tiếng anh qua cách tiếp cận CLIL theo mô-đun , Tạp chí Khoa học Đại học Đồng Tháp: Tập 12 Số 01S (2023): Số Đặc biệt chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Văn Dũng, Nguyễn Thị Trúc Linh, Điều kiện co ciric sưy rộng trong không gian b-metric , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 2 (2022): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Nguyễn Văn Dũng, Nguyễn Trung Hiếu, Võ Đức Thịnh, Công bố khoa học của Trường Đại học Đồng Tháp giai đoạn 2003-2013 và đề xuất một số định hướng , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần A - Khoa học Xã hội và Nhân văn
- Phạm Thị Mai Thắm, Võ Thị Lệ Hằng, Nguyễn Văn Dũng, Về tính siêu ổn định suy rộng cho phương trình hàm Drygas , Tạp chí Khoa học Đại học Đồng Tháp: Tập 10 Số 3 (2021): Chuyên san Khoa học Tự nhiên (Tiếng Việt)