On hyperstability of generalized linear equations in several variables in quasi-normed spaces

Phu Quy Nguyen1, , Van Dung Nguyen2
1 Student, Faculty of Mathematics Teacher Education, Dong Thap University, Vietnam
2 Faculty of Mathematics Teacher Education, Dong Thap University, Vietnam

Main Article Content

Abstract

In this paper, we state and prove the hyperstability of generalized linear equations in several variables in quasi-normed spaces. As applications, we deduce some known results and some particular cases of generalized linear equations in several variables.

Article Details

References

D. G. Bourgi. (1949). Approximately isometric and multiplicative transformations on continuous function rings, Duke Math J., (16), 385-397.
J. Brzdek, J. Chudziak, and Z. Piles. (2011). A fixed point approach to stability of functional equations. Nonlinear Anal., (74), 6728-6732.
N. V. Dung and V. T. L. Hang. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces.
J. Math. Anal. Appl., 462(1), 131-147.
D. H. Hyers. (1941). On the stability of the linear functional equation. Proc. Natl.
Acad. Sci. USA. (27), 222-224.
N. Kalton. (2003). Quasi-Banach spaces. In: W.B. Johnson, and J. Lindenstrauss (Eds.). Handbook of the Geometry of Banach Spaces. Elsevier, Amsterdam. (2), 1099-1130.
N. J. Kalton, N. T. Peck, and J. W. Roberts. (1984). An F-space sampler. London mathematical society lecture note series, Cambridge University Press. (89), 15-32.
L. Maligranda. (2008). Tosio Aoki (1910- 1989). In International symposium on Banach and Function Spaces II.
Yokohama Publishers, Yokohama. 1-23.
G. Maksa and Z. Pales. (2001). Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyhazi. (NS). (17), 107-112.
S. M. Ulam. (1964). Problems in Modern Mathematics. Wiley, New York.
D. Zhang. (2015). On hyperstability of generalised linear equation in several variables. Bull. Aust. Math. Soc., (92), 259-267.