Ứng dụng Lý thuyết trắc nghiệm cổ điển trong phân tích câu hỏi trắc nghiệm khách quan
Nội dung chính của bài viết
Tóm tắt
Bài viết báo cáo kết quả nghiên cứu và vận dụng Lý thuyết trắc nghiệm cổ điển trong phân tích câu hỏi trắc nghiệm khách quan. Phương pháp thống kê toán học được sử dụng để phân tích một bộ đề trắc nghiệm khách quan 30 câu hỏi với 85 bài làm của sinh viên. Kết quả cho thấy lý thuyết này có thể được vận dụng để phân tích các thông số của câu hỏi trắc nghiệm như độ khó, độ phân biệt, chất lượng của các phương án nhiễu… Các thông số này đóng vai trò quan trọng trong việc chuẩn hóa và nâng cao dần chất lượng của các câu hỏi thi. Việc sử dụng các câu hỏi đã được chuẩn hóa giúp cho hoạt động kiểm tra, đánh giá kết quả học tập trong nhà trường được chính xác, khách quan và công bằng hơn.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Lý thuyết trắc nghiệm cổ điển, câu hỏi trắc nghiệm khách quan, đánh giá kết quả học tập
Tài liệu tham khảo
[2]. Ebel, R. L. (1965), Measuring Educational Achievement, Englewood Cliffs: Prentice - Hall.
[3]. Osterlind, S. J. (1989), Constructing test items, Boston: Kluwer Academic.
[4]. Lâm Quang Thiệp (2008), Trắc nghiệm và ứng dụng, NXB Khoa học và Kỹ thuật, Hà Nội.
[5]. Margaret Wu, Hak Ping Tam, Tsung-Hau Jen (2016), Educational Measurement for Applied Researchers: Theory into Practice, Springer Nature Singapore Pte Ltd.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Đoàn Thị Kiều Ngân, Nguyễn Trung Hiếu, Định lí điểm bất động chung của ánh xạ - co yếu phi tuyến tính trong không gian kiểu-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 13 (2015): Phần B - Khoa học Tự nhiên
- Bùi Thị Ngọc Hân, Nguyễn Trung Hiếu, Định lí điểm bất động với điều kiện co kiểu Pata suy rộng trong không gian b-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 19 (2016): Phần B - Khoa học Tự nhiên