Điều kiện cần và đủ theo dãy cho nghiệm của bài toán tối ưu với ràng buộc nhúng
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi xây dựng điều kiện cần và đủ theo dãy cho nghiệm của bài toán tối ưu với ràng buộc nhúng. Các điều kiện tối ưu theo dãy đạt được trong bài báo này không cần kèm theo một ràng buộc chính qui.
Từ khóa
Dãy, nghiệm của bài toán tối ưu, ràng buộc nhúng
Chi tiết bài viết

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
[1]. J. M. Borwein and H. Wolkowicz (1982), “Characterizations of optimality without constraint qualification for the abstract convex program”, Math. Programming Stud., (19), p. 77-100.
[2]. A. Brondsted and R. T. Rockafellar (1965), “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., (16), p. 605-611.
[3]. S. Dempe and A. B. Zemkoho (2012), “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem”, Nonlinear Anal., (75), p. 1202-1218.
[4]. S. Dempe, N. Dinh, and J. Dutta (2010), “Optimality Conditions for a Simple Convex Bilevel Programming Problem”, Variational Analysis and Generalized Differentiation in Optimization and Control Springer Optimization and Its Applications, (47), p. 149-161.
[5]. A. Dhara and J. Dutta (2012), Optimality Conditions in Convex Optimization, A Finite-Dimension View, Taylor and Francis Group.
[6]. W. Heins and S. K. Mitter (1970), “Conjugate convex function, Duality and Optimal control, Problem I: Systems Governed Ordinary Differential equations”, Inform. Sciences, (2), p. 211-243.
[7]. V. Jeyakumar, G. M. Lee, and N. Dinh (2003), “New sequential Lagrange multiplier conditions charactering optimality without constraint qualification for convex programs”, Siam J. Optim., (14), p. 534-547.
[8]. V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka (1996), “Inequality systems and Global optimization”, J. Math. Anal. App., (202), p. 900-919.
[9]. P. Kanniappan (1983), “ Necessary condition for optimality of nondifferentiable convex multiobjective programming”, J. Optim. Theory and App., (40), p. 167-174.
[10]. L. Thibault (1997), “Sequential convex subdifferential calculus and Lagrange multipliers”, Siam J. Control Optim., (7), p. 641-662.
[2]. A. Brondsted and R. T. Rockafellar (1965), “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., (16), p. 605-611.
[3]. S. Dempe and A. B. Zemkoho (2012), “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem”, Nonlinear Anal., (75), p. 1202-1218.
[4]. S. Dempe, N. Dinh, and J. Dutta (2010), “Optimality Conditions for a Simple Convex Bilevel Programming Problem”, Variational Analysis and Generalized Differentiation in Optimization and Control Springer Optimization and Its Applications, (47), p. 149-161.
[5]. A. Dhara and J. Dutta (2012), Optimality Conditions in Convex Optimization, A Finite-Dimension View, Taylor and Francis Group.
[6]. W. Heins and S. K. Mitter (1970), “Conjugate convex function, Duality and Optimal control, Problem I: Systems Governed Ordinary Differential equations”, Inform. Sciences, (2), p. 211-243.
[7]. V. Jeyakumar, G. M. Lee, and N. Dinh (2003), “New sequential Lagrange multiplier conditions charactering optimality without constraint qualification for convex programs”, Siam J. Optim., (14), p. 534-547.
[8]. V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka (1996), “Inequality systems and Global optimization”, J. Math. Anal. App., (202), p. 900-919.
[9]. P. Kanniappan (1983), “ Necessary condition for optimality of nondifferentiable convex multiobjective programming”, J. Optim. Theory and App., (40), p. 167-174.
[10]. L. Thibault (1997), “Sequential convex subdifferential calculus and Lagrange multipliers”, Siam J. Control Optim., (7), p. 641-662.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Huynh Thi Kim Loan, Vo Duc Thinh, Cones generated by semi-infinite systems and their applications on optimization , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 5 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Huỳnh Ngọc Cảm, Nguyễn Thành Nghĩa, Võ Đức Thịnh, Tập đóng suy rộng và tập mở suy rộng trong không gian tôpô , Tạp chí Khoa học Đại học Đồng Tháp: Số 3 (2013): Phần B - Khoa học Tự nhiên
- Vo Duc Thinh, Huynh Ngoc Cam, Subdifferentials with degrees of freedom and applications to optimization problems , Tạp chí Khoa học Đại học Đồng Tháp: Tập 14 Số 5 (2025): Chuyên san Khoa học Tự nhiên (Tiếng Anh)