Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận

Trung Hieu Nguyen1
1 Dong Thap University

Main Article Content

Abstract

In this paper, we state some fixed point theorems in a partially ordered S -metric space and show that the fixed point theorems in [6] may be obtained from these theorems. Also, we give some examples to illustrate the results.

Article Details

References

[1]. T. V. An and N. V. Dung, Two fixed point theorems in S-metric spaces,(2012), preprint.
[2]. J. Caballero, J. Harjani, and K. Sadarangani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. 2010, Article ID 916064, 14 pages, doi:10.1155/2010/916064.
[3]. N. V. Dung and N. T. Hieu, One fixed point theorem for g-monotone maps on partially ordered S-metric spaces, (2012), preprint.
[4] N. V. Dung, N. T. Hieu, and N. T. T. Ly, A generalization of Ciric quasi-contractions for
maps on S-metric spaces, Thai. J. Math.(2013), accepted.
[5]. M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc, 30(1)(1984), 1-9.
[6]. R. Sastry and R. Babu, Some fixed point theorems by altering distances between the points, Indian J. pure appl. Math, 30(6) (1999), 641-647.
[7]. S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2011), no.3, 258-266.
[8]. S. Sedghi and N. V. Dung, Fixed point theorem on S-metric spaces, Mat. Vesnik (2012), accepted.
[9]. W. Shatanawi and A. Al-Rawashdeh, Common fixed points of almost generalized -contractive mappings in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:80, 13 pages, doi:10.1186/1687-1812-2012-152.
[10]. Y. Su, Q. Feng, J. Zhang, Q. Cheng, and F. Yan, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012, 2012:152 13 pages, doi:10.1186/1687-1812-2012-152.