Evaluating adsorption of methylene blue using nanocellulose from fresh coconut fiber

Huynh Vu Thanh Luong1,2, , Thanh Phu Le2, Quoc Phu Duong2, Trong Tuan Nguyen3, Duy Toan Pham3
1 Faculty of Chemical Engineering, Can Tho University, Vietnam
2 Applied Chemical Engineering Lab, Can Tho University, Vietnam
3 Department of Health Sciences, Can Tho University, Vietnam

Main Article Content

Abstract

This study aims to synthesize nanocellulose from fresh coconut fiber and evaluate its ability to adsorb the organic dye Methylene Blue (MB). Accordingly, it investigated factors influencing MB adsorption in aqueous environments, including pH, adsorption time, MB concentration, and temperature. Analytical techniques included Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), as well as surface morphology analysis using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). These techniques were employed to assess the properties of the material and confirm the successful synthesis of nanocellulose from fresh coconut fiber. The optimal synthesis conditions involved using 12 M sulfuric acid at a 1:10 (w/v) fiber-to-acid ratio, with a reaction time of 45 minutes at 30°C. The results showed that the specific surface area of Nanocellulose was 5.062 m²/g, with mesoporous pores having a diameter of 23.724 Å. The Nanocellulose material exhibited effective MB adsorption in water under optimal conditions: pH 6, adsorption time of 15 h, and initial MB concentration of 25 mg/L. The MB adsorption process followed the Langmuir isotherm model, second-order kinetics, and was predominantly a physical adsorption process.

Article Details

References

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and environmental safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere, 291, 132786. https://doi.org/10.1016/j.chemosphere.2021.132786
Bambo, M. F., Matabola, K. P., May, B., Chauke, N., & Munonde, T. (2024). Fabrication and Characterization of Flame Retardant Nanocellulose-Based Materials. In Biomaterials as Green Flame Retardants (pp. 185-229). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6871-4_9
Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), 259-267. https://doi.org/10.1016/j.desal.2005.10.032
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
Gouamid, M. O. M. R., Ouahrani, M. R., & Bensaci, M. B. (2013). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy procedia, 36, 898-907. https://doi.org/10.1016/j.egypro.2013.07.103
Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
Ismail, B., Hussain, S. T., & Akram, S. (2013). Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: adsorption isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 219, 395-402. https://doi.org/10.1016/j.cej.2013.01.034
Le, T. P., Luong, H. V. T., Nguyen, H. N., Pham, T. K. T., Le, T. L. T., Tran, T. B. Q., & Ngo, T. N. M. (2024). Insight into adsorption-desorption of methylene blue in water using zeolite NaY: Kinetic, isotherm and thermodynamic approaches. Results in Surfaces and Interfaces, 16, 100281. https://doi.org/10.1016/j.rsurfi.2024.100281
Li, H., Shen, D., Lu, H., Wu, F., Chen, X., Pleixats, R., & Pan, J. (2021). The synthetic approaches, properties, classification and heavy metal adsorption applications of periodic mesoporous organosilicas. Separation and Purification Technology, 277, 119453. https://doi.org/10.1016/j.seppur.2021.119453
Ling, Z., Xu, F., Edwards, J. V., Prevost, N. T., Nam, S., Condon, B. D., & French, A. D. (2019). Nanocellulose as a colorimetric biosensor for effective and facile detection of human neutrophil elastase. Carbohydrate polymers, 216, 360-368. https://doi.org/10.1016/j.carbpol.2019.04.027
Luong, H. T., Le, T. L., Ly, X. H., Le, T. P., Nguyen, N. Y., & Pham, D. T. (2025). Optimizing cellulose extraction from coconut coir pith via response surface methodology for improving methylene blue adsorption. International Journal of Environmental Science and Technology, 22(7), 5591-5608. https://doi.org/10.1007/s13762-024 05963-4
Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., & Liu, D. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate polymers, 98(1), 562-567. https://doi.org/10.1016/j.carbpol.2013.06.029
Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408. https://doi.org/10.1016/j.jmmm.2020.166408
Mohammad, S., & Suzylawati, I. (2020). Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. Journal of Water Process Engineering, 34, 101155. https://doi.org/10.1016/j.jwpe.2020.101155
Moraes, F. P., Cordeiro, N. G. B., Bojorge, N., & Alhadeff, E. M. (2024). Coconut fibre for the synthesis of microfibrillated cellulose: Thermal analysis experimental characterization. The Canadian Journal of Chemical Engineering, 102(10), 3405-3415. https://doi.org/10.1002/cjce.25270
Oyarce, E., Cantero-López, P., Yañez, O., Roa, K., Boulett, A., Pizarro, G. D. C., ... & Sánchez, J. (2022). Nanocellulose bio-based composites for the removal of methylene blue from water: An experimental and theoretical exploration. Journal of Molecular Liquids, 357, 119089. https://doi.org/10.1016/j.molliq.2022.119089
Rao, R. A. K., Khan, M. A., & Rehman, F. (2011). Batch and column studies for the removal of lead (II) ions from aqueous solution onto lignite. Adsorption Science & Technology, 29(1), 83-98. https://doi.org/10.1260/0263-6174.29.1.83
Saupi, F. A. C., et al. (2025). Comparative analysis of nanocellulose extraction from Cocos nucifera shell by ultrasonication versus acid hydrolysis for methylene blue dye removal. Iranian Polymer Journal, 1-24. https://doi.org/10.1007/s13726-025-01462-6
Shahnaz, T., Bedadeep, D., & Narayanasamy, S. (2022). Investigation of the adsorptive removal of methylene blue using modified nanocellulose. International journal of biological macromolecules, 200, 162-171. https://doi.org/10.1016/j.ijbiomac.2021.12.081
Thanh, L. H. V., Lợi, H. H., Pha, L. P., Giao, Đ. H., & Hạnh, C. L. N. (2023). Đánh giá khả năng hấp phụ methylene bule trong nước của vật liệu composite tổng hợp từ phụ phẩm bã mía. Tạp chí Khoa học Đại học Cần Thơ, 59(CĐ Khoa học Kỹ thuật và Công nghệ), 109-118. https://doi.org/10.22144/ctu.jvn.2023.035
Trần, T. X. M., Nguyễn, T. N. Q., & Bùi, V. T. (2024). Chế tạo vật liệu bentonite biến tính bằng citric acid để xử lý methylene blue trong nước. Tạp chí Khoa học Đại học Đồng Tháp, 14(2), 41-52. https://doi.org/10.52714/dthu.14.2.2025.1435
Vu, A. N., Nguyen, L. H., Tran, H. C. V., Yoshimura, K., Tran, T. D., Van Le, H., & Nguyen, N. U. T. (2024). Cellulose nanocrystals extracted from rice husk using the formic/peroxyformic acid process: isolation and structural characterization. RSC advances, 14(3), 2048-2060. https://doi.org/10.1039/D3RA06724F
Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., & Lu, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of colloid and interface science, 284(2), 440-446. https://doi.org/10.1016/j.jcis.2004.10.050
Wang, S., Zou, Q., Zhang, L., Zheng, W., Huang, X., & Zhang, J. (2023). A new nanocellulose prepared from waste coconut shell fibers based on a novel ultrasonic–Active agent combination method: Preparation principle and performances in cement matrix. Industrial Crops and Products, 197, 116607. https://doi.org/10.1016/j.indcrop.2023.116607
Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8. https://doi.org/10.1016/j.cej.2009.04.042
Yang, S. T., et al. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of colloid and interface science, 359(1), 24-29. https://doi.org/10.1016/j.jcis.2011.02.064
Yue, Y., Han, J., Han, G., Aita, G. M., & Wu, Q. (2015). Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products, 76, 355-363. https://doi.org/10.1016/j.indcrop.2015.07.006
Zha, R., Shi, T., He, L., & Zhang, M. (2022). Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for protein sensing. Advances in Colloid and Interface Science, 308, 102758. https://doi.org/10.1016/j.cis.2022.102758

Most read articles by the same author(s)