In Silico Screening of SARS-CoV-2 RBD-Targeting Antibodies Using HDOCK and PRODIGY
Main Article Content
Abstract
The COVID-19 pandemic and the emergence of SARS-CoV-2 variants underscore the need for potent neutralizing monoclonal antibodies. This study screened 288 antibodies targeting the receptor-binding domain (RBD) of SARS-CoV-2 using the HDOCK platform for protein-protein docking, followed by binding affinity prediction with PRODIGY. Five antibody-RBD complexes (P4A2, C1A-B3, COVOX-150, CC12.1, and 3G10) were identified with high docking scores and binding affinities in the picomolar to nanomolar range (Kd: 8.20 x 10-15 to 1.20 x 10-13 M). Key RBD residues (Tyr473, Leu455, Asn487, Tyr501) were found to drive stable interactions through hydrogen bonds and nonbonded contacts. A strong correlation (R = -0.9, p < 0.001) between HDOCK docking scores, binding free energy (ΔG), and ln(Kd) validates the predictive consistency of this approach. These findings provide a computational framework for prioritizing antibody candidates for further experimental validation, supporting cost-effective antibody development for COVID-19 treatment in Vietnam.
Keywords
HDOCK, monoclonal antibody, PRODIGY, protein-protein docking, RBD, SARS-CoV-2.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Iyer, A. S., Jones, F. K., Nodoushani, A., Kelly, M., Becker, M., Slater, D., Mills, R., Teng, E., Kamruzzaman, M., Garcia-Beltran, W. F., Astudillo, M., Yang, D., Miller, T. E., Oliver, E., Fischinger, S., Atyeo, C., Iafrate, A. J., Calderwood, S. B., Lauer, S. A., Yu, J., Li, Z., Feldman, J., Hauser, B. M., Caradonna, T. M., Branda, J. A., Turbett, S. E., LaRocque, R. C., Mellon, G., Barouch, D. H., Schmidt, A. G., Azman, A. S., Alter, G., Ryan, E. T., Harris, J. B., & Charles, R. C. (2020). Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Science Immunology, 5(52), eabe0367. https://doi.org/doi:10.1126/sciimmunol.abe0367
Kaas, Q., Ruiz, M., & Lefranc, M. P. (2004). IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res, 32(Database issue), D208-210. https://doi.org/10.1093/nar/gkh042
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
Li, S. M, Khanh, M. (2012). Steered molecular dynamics-A Promising tool for drug design, Current Bioinformatics, 7(4), 342-351. https://doi.org/10.2174/157489312803901009
Olsen, T. H., Boyles, F., & Deane, C. M. (2022). Observed antibody space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci, 31(1), 141-146. https://doi.org/10.1002/pro.4205
Premkumar, L., Segovia-Chumbez, B., Jadi, R., Martinez, D. R., Raut, R., Markmann, A., Cornaby, C., Bartelt, L., Weiss, S., Park, Y., Edwards, C. E., Weimer, E., Scherer, E. M., Rouphael, N., Edupuganti, S., Weiskopf, D., Tse, L. V., Hou, Y. J., Margolis, D., Sette, A., Collins, M. H., Schmitz, J., Baric, R. S., & de Silva, A. M. (2020). The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol, 5(48). https://doi.org/10.1126/sciimmunol.abc8413
Raybould, M. I. J., Kovaltsuk, A., Marks, C., & Deane, C. M. (2021). CoV-AbDab: the coronavirus antibody database. Bioinformatics, 37(5), 734-735. https://doi.org/10.1093/bioinformatics/btaa739
Schrödinger, LLC. (2015). The PyMOL molecular graphics system, Version 1.8. https://pymol.org
Taylor, P. C., Adams, A. C., Hufford, M. M., de la Torre, I., Winthrop, K., & Gottlieb, R. L. (2021). Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol, 21(6), 382-393. https://doi.org/10.1038/s41577-021-00542-x
Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A. D. M. E., van Kuppeveld, F. J. M., Haagmans, B. L., Grosveld, F., & Bosch, B.-J. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 11(1), 2251. https://doi.org/10.1038/s41467-020-16256-y
Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 32(23), 3676-3678. https://doi.org/10.1093/bioinformatics/btw514
Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S.-Y. (2017). HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365-W373. https://doi.org/10.1093/nar/gkx407
Most read articles by the same author(s)
- Thi Ngoc Thanh Huynh, Quoc Thai Nguyen, Van Thang Bui, Studying the interaction of CID 16040294 compound with beta amyloid by docking method , Dong Thap University Journal of Science: Vol. 12 No. 2 (2023): Natural Sciences Issue (Vietnamese)
- TS. Thai Nguyen Quoc, Master Thi Ngoc Thanh Huynh, Bachelor Minh Nhan Kieu, Bachelor Nhat Ha Kieu, Molecular mechanism of Ensitrelvir and its similarity inhibiting SARS-CoV-2 main protease by molecular dynamics simulation , Dong Thap University Journal of Science: Vol. 13 No. 5 (2024): Natural Sciences Issue (English)
- Truong Giang Pham, Quoc Tuan Tran, Thi Ngoc Thanh Huynh, Quoc Thai Nguyen, Thi Ngoc Tu Le, Identification of the potential compounds for inhibition CD44 target of human breast cancer stem cells by docking method , Dong Thap University Journal of Science: Vol. 13 No. 5 (2024): Natural Sciences Issue (English)
- Thi Ngoc Thanh Huynh, Quoc Thai Nguyen, Minh Tri Pham, Identifying potential drugs for inhibition the M2 protein channel of influenza A by steered molecular dynamics , Dong Thap University Journal of Science: Vol. 11 No. 5 (2022): Natural Sciences Issue (English)