Magneto-thermopower in MoSe2 monolayer

Ngoc Bich Tran1,2, Dinh Le1, Vinh Phuc Huynh3,
1 Physics Department, University of Education, Hue University, Vietnam
2 Faculty of Basic Sciences, Quang Binh University, Vietnam
3 Department of Natural Sciences Teacher Education, Dong Thap University, Vietnam

Main Article Content

Abstract

We study the influence of the external magnetic field, temperature, and electron concentration on the magneto-thermopower due to the phonon-drag effect, Sxxg, in the MoSe2 monolayer. The analytical expression for Sxxg is found from Π-method. Our numerical results show that the density of state and Sxxg show an oscillation as a function of a magnetic field with its amplitude increases in the large magnetic field region. The Sxxg increases with temperatures but decreases with electron concentrations. The numerical calculations for Sxxg are compared with those in the graphene monolayer.

Article Details

References

Back, P., Sidler, M., Cotlet, O., Srivastava, A., Takemura, N., Kroner, M., & Imamoğlu, A. (2017). Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Physical Review Letters, 118(23), 237404. DOI: 10.1103/PhysRevLett.118.237404.
BBich, T. N., Kubakaddi, S. S., Dinh, L., Hieu, N. N., & Phuc, H. V. (2021). Oscillations of the electron energy loss rate in two-dimensional transition-metal dichalcogenides in the presence of a quantizing magnetic field. Physical Review B, 103(23), 235417. DOI: 10.1103/PhysRevB.103.235417.
Biswas, T., & Ghosh, T. K. (2013). Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems. Journal of Physics: Condensed Matter, 25(41), 415301. DOI: 10.1088/0953-8984/25/41/415301.
Buscema, M., Barkelid, M., Zwiller, V., van der Zant, H. S., Steele, G. A., & Castellanos-Gomez, A. (2013). Large and tunable photothermoelectric effect in single-layer MoS2. Nano Letters, 13(2), 358-363. DOI: 10.1021/nl303321g.
Cantrell, D. G., & Butcher, P. N. (1987). A calculation of the phonon-drag contribution to the thermopower of quasi-2D electrons coupled to 3D phonons. I. General theory. Journal of Physics C: Solid State Physics, 20(13), 1985. DOI: 10.1088/0022-3719/20/13/014.
Cantrell, D. G., & Butcher, P. N. (1987). A calculation of the phonon-drag contribution to the thermopower of quasi-2D electrons coupled to 3D phonons. II. Applications. Journal of Physics C: Solid State Physics, 20(13), 1993. DOI: 10.1088/0022-3719/20/13/015.
Chow, C. M., Yu, H., Jones, A. M., Schaibley, J. R., Koehler, M., Mandrus, D. G., Merlin, R., Yao, W., & Xu, X. (2017). Phonon-assisted oscillatory exciton dynamics in monolayer MoSe2. NPJ 2D Materials and Applications, 1(1), 1-6. DOI: 10.1038/s41699-017-0035-1.
Wang, G., Chernikov, A., Glazov, M. M., Heinz, T. F., Marie, X., Amand, T., & Urbaszek, B. (2018). Colloquium: Excitons in atomically thin transition metal dichalcogenides. Reviews of Modern Physics, 90, 021001. DOI: 10.1103/RevModPhys.90.021001.
Geim, A. K., & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature, 499, 6. DOI: 10.1038/nature12385.
Greenaway, M. T., Kumar, R. K., Kumaravadivel, P., Geim, A. K., & Eaves, L. (2019). Magnetophonon spectroscopy of Dirac fermion scattering by transverse and longitudinal acoustic phonons in graphene. Physical Review B, 100(15), 155120. DOI: 10.1103/PhysRevB.100.155120.
Herring, C. (1954). Theory of the thermoelectric power of semiconductors. Physical Review, 96(5), 1163. DOI: 10.1103/PhysRev.96.1163.
Hien, N. D., Nguyen, C. V., Hieu, N. N., Kubakaddi, S. S., Duque, C. A., Mora-Ramos, M. E., ... & Phuc, H. V. (2020). Magneto-optical transport properties of monolayer transition metal dichalcogenides. Physical Review B, 101(4), 045424. DOI: 10.1103/PhysRevB.101.045424.
Kubakaddi, S. S., Biswas, T., & Ghosh, T. K. (2017). Phonon-drag magnetoquantum oscillations in graphene. Journal of Physics: Condensed Matter, 29(30), 305301. DOI: 10.48550/arXiv.1702.01087.
Kubakaddi, S. S., Butcher, P. N., & Mulimani, B. G. (1989). Phonon-drag thermopower of a two-dimensional electron gas in a quantizing magnetic field. Physical Review B, 40(2), 1377. DOI: 10.1103/PhysRevB.40.1377.
Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105(13), 136805. DOI: 10.1103/PhysRevLett.105.136805.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V.,Dubonos, S., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. DOI: 10.1038/nature04233.
Tieke, B., Fletcher, R., Zeitler, U., Henini, M., & Maan, J. C. (1998). Thermopower measurements of the coupling of phonons to electrons and composite fermions. Physical Review B, 58(4), 2017. DOI: 10.1103/PhysRevB.58.2017.
Tsaousidou, M., Butcher, P. N., & Triberis, G. P. (2001). Fundamental relationship between the Herring and Cantrell-Butcher formulas for the phonon-drag thermopower of two-dimensional electron and hole gases. Physical Review B, 64(16), 165304. DOI: 10.1103/PhysRevB.64.165304.