Monitoring 15-year land use/land cover change in the Vietnamese Mekong Delta

Ho Nguyen1, , Van Phu Phan2, Thi Hong Diep Nguyen3
1 Faculty of Agriculture and Environment Resources, Dong Thap University, Vietnam
2 Faculty of Geography, Ho Chi Minh city University of Pedagogy, Vietnam
3 College of Environment and Natural resource, Can Tho University, Vietnam

Main Article Content

Abstract

Although land use/land cover (LULC) information plays a critical role in the maintenance of living standards with a balance among the environment, development, and sustainability, it remains little comprehensive understanding in the entire Vietnamese Mekong Delta (VMD). In this study, we used the random forest algorithm, Landsat images, ancillary and empirical reference data to carefully analyse the 15 years’ spatiotemporal changes (2005 - 2020) of LULC in the VMD region. Results show that agriculture has been the most dominant land, accounting for approximately half of the whole region during the fifteen years.
Remarkably, most of the LULC categories have undergone dramatic transformation with the proportion of the wetland area decreasing from about 16% in 2005 to 5% in 2020, whereas that of the aquaculture area sharply increased from about 12% to 19% over the same period. Meanwhile, there was a marked increase in the area of perennial crops and built-up lands. These results of LULC maps and change detection helps understand the impact of past policies and the role of several factors such as socio-economic trends and environmental changes in this region.

Article Details

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5 - 3 2 . https://doi.org/10.1023/A:1010933404324.
Castella, J.-C., Pheng Kam, S., Dang Dinh Quang, Verburg, P. H., & Thai Hoanh, Chu (2007). Combining top-down and bottom- up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy, 24(3), 531-545. https://doi.org/10.1016/j. landusepol.2005.09.009.
Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. International Journal of Remote Sensing, 21(6), 1093-1114. https://doi. org/10.1080/014311600210092.
Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: principles and practices (2nd ed.). Boca Raton: CRC Press/ Taylor & Francis.
Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565-1596. https://doi.org/10.1080/014311603 1000101675.
Duong, V. N., Safford, R. J., & Maltby, E. (2001). Environmental change, ecosystem degradation and the value of wetland rehabilitation in the Mekong Delta. In W. N. Adger (Ed.), Living with Environmental Change (122-136). London: Routledge. https://doi. org/10.4324/9780203995570.
Funkenberg, T., Tran, T. B., Moder, F., & Dech, S. (2014). The Ha Tien Plain - wetland monitoring using remote-sensing techniques. International Journal of Remote Sensing, 35(8), 2893-2909. https://doi.org/10.1080/01431161.2 014.890306.
GSO, (General Statistical Office). (2019). Statistical Yearbook of Vietnam 2018. Ha Noi: Statistical Publishing House.
Kelletat, D., Chen, J., Rybczyk, J. M., Penland, S., Kulp, M. A., Duedall, I. W., et al. (2005). Deltaic Ecology. In M. L. Schwartz (Ed.), Encyclopedia of Coastal Science (359-362). Dordrecht: Springer Netherlands.
Kontgis, C., Schneider, A., & Ozdogan, M. (2015). Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sensing of Environment, 169, 255-269. https://doi.org/10.1016/j.rse.2015.08.004.
Le, T. N., Bregt, A. K., van Halsema, G. E., Hellegers, P. J. G. J., & Nguyen, L. D. (2018). Interplay between land-use dynamics and changes in hydrological regime in the Vietnamese Mekong Delta. Land Use Policy, 73, 269-280. https://doi.org/10.1016/j. landusepol.2018.01.030.
Liu, S., Li, X., Chen, D., Duan, Y., Ji, H., Zhang, L., et al. (2020). Understanding Land use/Land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years. Global Ecology and Conservation, 22, e00991. https://doi.org/10.1016/j.gecco.2020.e00991.
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1 080/01431161.2018.1433343.
McRoberts, R. E., Stehman, S. V., Liknes, G. C., Næsset, E., Sannier, C., & Walters, B. F. (2018). The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 292-300. https://doi. org/10.1016/j.isprsjprs.2018.06.002.
Mekong Delta Plan, (MDP). (2013). Mekong Delta Plan: Long-term vision and strategy for a safe, prosperous and sustainable delta. Vietnam-Netherlands Co-operation. Retrieved from: https://www.mekongdeltaplan.com/library/ documents.
Moder, F., Kuenzer, C., Xu, Z., Leinenkugel, P., Quyen, B. Van, Renaud, F. G., & Kuenzer, C. (2012). The Mekong Delta System. In Renaud F.G. and Kuenzer C. (Eds), The Mekong Delta System: Interdisciplinary Analyses of a River Delta, (133-165). Dordrecht: Springer Netherlands.
Ngo, D. K., Lechner, A. M., & Vu, T. T. (2020). Land cover mapping of the Mekong Delta to support natural resource management with multi-temporal Sentinel-1A synthetic aperture radar imagery. Remote Sensing Applications: Society and Environment, 17, 100272. https://doi.org/10.1016/j.rsase.2019.100272.
Nguyen, H., Phan, V. P., Nguyen, T. P., Lu, N. T. A., Nguyen, T. H. L., & Nguyen, T. H. D. (2020). Wetland monitoring in the Plain of Reeds using Landsat images. Journal of Science Natural Science, 65(3), 194-204. https://doi.org/10.18173/2354-1059.2020-0022.
Nguyen, H. Q., Tran, D. D., Dang, K. K., Korbee, D., Pham, L. D., Vu, L. T., et al. (2020). Land-use dynamics in the Mekong delta: From national policy to livelihood sustainability. Sustainable Development, 28(3), 448-467. https://doi.org/10.1002/sd.2036.
Nguyen, T. S., Chen, C. F., Chen, C. R., Duc, H. N., & Chang, L. Y. (2013). A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sensing, 6(1), 135-156. https://doi.org/10.3390/rs6010135.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j. isprsjprs.2011.11.002.
Tran, T. V., Tran, D. X., Nguyen, H., Latorre‐Carmona, P., & Myint, S. W. (2021). Characterising spatiotemporal vegetation variations using LANDSAT time‐series and Hurst exponent index in the Mekong River Delta. Land Degradation & Development, 32(13), 3507-3523. https://doi.org/10.1002/ ldr.3934.
Vo, Q. T., Oppelt, N., Leinenkugel, P., & Kuenzer, C. (2013). Remote Sensing in Mapping Mangrove Ecosystems - An Object-Based Approach. Remote Sensing, 5(1), 183-201. https://doi.org/10.3390/rs5010183.