Tồn tại nghiệm cho bài toán tối ưu hàm khoảng với thứ tự từ điển

Dương Thị Kim Nhàn1, Trần Thị Như Ý1, Võ Thị Trúc My1, Bùi Ngọc Anh Thư1, Đinh Ngọc Quý1,
1 Bộ môn Toán, Khoa Khoa học Tự nhiên, Đại học Cần Thơ, Việt Nam

Nội dung chính của bài viết

Tóm tắt

Trong bài báo này, chúng tôi cung cấp hai khái niệm nghiệm cho bài toán tối ưu với hàm mục tiêu có giá trị khoảng dựa trên cấu trúc sắp xếp theo thứ tự từ điển. Đây là các thứ tự toàn phần để sắp xếp các khoảng nên kỳ vọng sẽ có nhiều ứng dụng và ý nghĩa trong thực tế. Dưới các thiết lập này, chúng tôi đưa ra các kết quả về sự tồn tại nghiệm cho bài toán tối ưu hàm khoảng được quan tâm.

Chi tiết bài viết

Tài liệu tham khảo

Ahmad, I., Jayswal, A., Al-Homidan, S., & Banerjee, J. (2019). Sufficiency and duality in intervalvalued variational programming. Neural Computing and Applications, 31, 4423–4433. https://doi.org/10.1007/s00521-017-3307-y
Aubin, J. P., & Ekeland, I. (1984). Applied Nonlinear Analysis. Wiley, NewYork.
Chalco-Cano, Y., Rufían-Lizana, A., Román-Flores, H., & Jiménez-Gamero, M.D. (2013). Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems, 219, 49–6. https://doi.org/10.1016/j.fss.2012.12.004
Ghosh, D. (2017). Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. Journal of Applied Mathematics and Computing, 53, 709–731. https://doi.org/10.1007/s12190-016-0990-2
Ghosh, D., Bhuiya, S.K., & Patra, L.K. (2018). A saddle point characterization of efficient solutions for interval optimization problems. Journal of Applied Mathematics and Computing, 58, 193–217. https://doi.org/10.1007/s12190-017-1140-1
Ghosh, D., Chauhan, R.S., Mesiar, R., & Debnath, A.K., (2020a). Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Information Sciences, 510, 317–340. https://doi.org/10.1016/j.ins.2019.09.023
Ghosh, D., Debnath, A.K., & Pedrycz, W. (2020b). A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. International Journal of Approximate Reasoning, 121, 187–205. https://doi.org/10.1016/j.ijar.2020.03.004
Ghosh, D., Singh, A., Shukla, K.K., & Manchanda, K. (2019). Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Information Sciences, 504, 276–292. https://doi.org/10.1016/j.ins.2019.07.017
Ishibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48, 219–225. https://doi.org/10.1016/0377-2217(90)90375-L
Moore, R.E., (1966). Interval Analysis. New Jersey, Englewood Cliffs, Prentice-Hall.
Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods & Applications, 71, 1311–1328. https://doi.org/10.1016/j.na.2008.12.005
Singh, D., Dar, B.A., & Kim, D. (2016). KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. European Journal of Operational Research, 254, 29–39. https://doi.org/10.1016/j.ejor.2016.03.042
Wu, H.C., (2007). The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176, 46–59. https://doi.org/10.1016/j.ejor.2005.09.007
Wu, H.C., (2008a). On interval-valued nonlinear programming problems. Journal of Mathematical Analysis and Applications, 338, 299–316. https://doi.org/10.1016/j.jmaa.2007.05.023
Wu, H.C. (2008b). Wolfe duality for interval-valued optimization. Journal of Optimization Theory and Applications, 138, 497–509. https://doi.org/10.1007/s10957-008-9396-0
Zhang, C., & Huang, N. (2022). On Ekeland’s variational principle for interval-valued functions with applications. Fuzzy Sets and Systems, 436,152–174. https://doi.org/10.1016/j.fss.2021.10.003
Zhang, Z., Wang, X., & Lu, J. (2018). Multi-objective immune genetic algorithm solving nonlinear interval-valued programming. Engineering Applications of Artificial Intelligence, 67, 235–245. https://doi.org/10.1016/j.engappai.2017.10.004