Effects of factors on the structure and crystallization process of Cu1-xAux alloy (x=0.25; 0.5; 0.75) by molecular dynamics simulation method

Quoc Tuan Tran1, Van Hoang Ong1, Thi Thu Cuc Nguyen1, Trong Dung Nguyen2,
1 Faculty of Basic Science, University of Transport Technology, Vietnam
2 Faculty of Physics, Hanoi National University of Education, Vietnam

Main Article Content

Abstract

In this study, molecular dynamics (MD) simulation method was used to study the effects of doping concentration, time step and annealing time on structural characteristics on crystallization process of Cu1-xAux alloy. The obtained results show that the used Sutton-Chen embedded interaction force field is appropriate. When increasing the Au doping concentration in the Cu1-xAux alloy, the crystallization process increases, and maximally at 50%Au and disappears at 75%Au. Meanwhile, an increase in the time step, annealing time and Au doping concentration in the Cu1-xAux alloy, the length of the links (r) of Cu-Cu, Cu-Au, Au-Au and the height of the distribution function g(r) will increase and have a variable value. In addition, the number of face-centered cubic (FCC), close-packed cubic (HCP), and amorphous (Amor) structural units change. The results obtained can be used as a basis for experimental studies into photocatalysis applications.

Article Details

References

Alavi, S. (2020). Molecular simulations: fundamentals and practice. Wiley-VCH Verlag GmbH: Weinheim, Germany.
Ali, R.; Kamran, B. (2017). Identification of crystal structures in atomistic simulation by predominant common neighborhood analysis. Comput. Mater. Sci. 126, 182-190. http://dx.doi.org/10.1016/j.commatsci.2016.09.035.
Artrith, N.; Kolpak, A.M. (2015). Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110, 20-28. http://dx.doi.org/10.1016/j.commatsci.2015.07.046.
Bond, G.C.; Louis, C.; Thompson, D.T. (2006). Catalysis by Gold. World Scientific: Singapore.
Çag?n, T.; Dereli, G.; Uludogan, M.; Tomak, M. (1999). Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59, 3468-3473. http://dx.doi.org/10.1103/physrevb.59.3468.
Cahn, R.W. (1990). in High Temperature Alluminides & Intermetallics/Ed. S.H. Whang et al. TMS Warrendale, USA, 245.
Chen, S.; Jenkins, S.V.; Tao, J.; Zhu, Y.; Chen, J. (2013). Anisotropic seeded growth of Cu-M (M = Au, Pt, or Pd) bimetallic nanorods with tunable optical and catalytic properties. J. Phys. Chem. C, 117, 8924-8932. http://dx.doi.org/10.1021/jp4013653.
Corma, A.; Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096-2126. http://dx.doi.org/10.1039/b707314n.
Daw, M.S.; Baskes, M.I. (1989). Model of metallic cohesion: The embedded-atom method. Phys. Rev. B, 39, 7441. http://dx.doi.org/10.1103/physrevb.39.7441.
Ercolessi, F.; Parrinello, M.; Tosatti, E. (1988). Melting and equilibrium shape of icosahedral gold nanoparticles. Phil. Mag. A, 58, 213.
Georg, Z.; Michele, R.; Clemens, M.; Daniel, S.; Cesare, F.; Jani, K. (2020). CuAu, a hexagonal two-dimensional metal, 2D. Mater, 7, 045017. http://dx.doi.org/10.1088/2053-1583/ab9c39.
Hoover, W.G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 31, 1695-1697. http://dx.doi.org/10.1103/physreva.31.1695.
Iwai, H.; Umeki, T.; Yokomatsu, M.; Egawa, C. (2008). Methanol partial oxidation on Cu-Zn thin films grown on Ni(1 0 0) surface. Surf. Sci. 602, 2541-2546. http://dx.doi.org/10.1016/j.susc.2008.06.001.
Jacek, D. (2009). Quantum classical calculations of the nanomechanical properties of metals. Task Q. 13, 207-310.
Kart, H.H.; Tomak, M. and C¸ag?n, T. (2005). Thermal and mechanical properties of Cu-Au intermetallic alloys, Modelling Simul. Mater. Sci. Eng, 13, 657-669. http://dx.doi.org/10.1088/0965-0393/13/5/002.
Li, Q.; Peng, X.; Peng, T.; Tang, Q.; Zhang, X.; Huang, C. (2015). Molecular dynamics simulation of Cu/Au thin films under temperature gradient. Appl. Surf. Sci. 357, 1823-1829. http://dx.doi.org/10.1016/j.apsusc.2015.10.051.
Nemoshkalenko, V.V.; Chuistov, K.V.; Aleshin, V.G.; Senkevich, A.I. (1976). Changes in energy structure of Cu3Au and CuAu3 alloys studied by the method of X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 9, 169-173. http://dx.doi.org/10.1016/0368-2048(76)81026-2.
Nose, S.A. (1984). Unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519. https://doi.org/10.1063/1.447334.
Pfeiler; Sprusil, B. (2002). Atomic ordering in alloys: Stable states and kinetics. Mater. Sci. Eng. A, 324, 34-42. http://dx.doi.org/10.1016/s0921-5093(01)01280-1.
Sharif, N.; Rosaria, B.; Pablo, G.; Sergio, M.; Liberato, M.; and Massimo, C. (2015). Nanoscale transformations of Alumina-supported AuCu ordered phase nanocrystals and their activity in CO oxidation, ACS Catalysis, 5, 2154-2163. http://dx.doi.org/10.1021/cs501923x.
The Materials Project. (2020). Materials data on CuAu by materials project; U.S. Department of Energy Office of Scientific and Technical Information: Berkeley, CA, USA.
Tuan, T.Q.; Van, C. L.; ¸Stefan¸ T. and Dung, N. T. (2022). Molecular dynamics study on the crystallization process of cubic Cu-Au alloy, Appl. Sci. 12, 946 (15). http://dx.doi.org/10.3390/app12030946.
Verlet, L. (1967). Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. B, 159, 98-103. http://dx.doi.org/10.1103/physrev.159.98.
Xu, Y.H.; Wang, J.P. (2008). Direct Gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Adv. Mater. 20, 994-999. http://dx.doi.org/10.1002/adma.200602895.