Investigating chemical composition and antibacterial activity of Catharanthus roseus (L.) G. Don

Thi Bach Le1, , Thi Thanh Xuan Le2, Thi Kim Phuong Pham3, Mai Anh Bui1, Thi Thuy Tam Nguyen4, Thanh Binh Nguyen4
1 Department of Chemistry, College of Natural Sciences, Can Tho University, Vietnam
2 Khoa Sư phạm Khoa học Tự nhiên, Trường Sư phạm, Trường Đại học Đồng Tháp, Việt Nam
3 Khoa Sư phạm, Trường Đại học An Giang, Đại học Quốc gia Thành phố Hồ Chí Minh
4 Bộ môn Khoa học sức khỏe, Khoa Khoa học Tự nhiên, Trường Đại học Cần Thơ

Main Article Content

Abstract

This study provides a preliminary evaluation of the antibacterial activity of different leaf extracts from Catharanthus roseus (L.) G. Don and identifies the most bioactive extract for subsequent phytochemical investigation. Among the tested extracts, the dichloromethane extract exhibited significant antibacterial activity against Vibrio sp. and Aeromonas caviae, two major pathogenic bacteria in aquaculture. Notably, the dichloromethane extract showed strong inhibition against Vibrio sp., with an inhibition zone diameter of 17.97±0.47 mm at a concentration of 128 µg/mL. Phytochemical analysis of the dichloromethane extract using nuclear magnetic resonance (1D, 2D-NMR) spectroscopy, in combination with comparison to published data, led to three compounds identified: apigenin (1), vindoline (2), and oleanolic acid (3). The results highlight the potential of C. roseus leaves as a promising natural source of potent antibacterial agents.

Article Details

References

Ayeleso, T.B., Matumba, M.G., & Mukwevho, E. (2017). Oleanolic acid and its derivatives: Biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1-16. https://doi.org/10.3390/molecules22111915
Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
Dais, P., Plessel, R., Williamson, K., & Hatzakis, E. (2017). Complete 1H and 13C NMR assignment and 31P NMR determination of pentacyclic triterpenic acids. Analytical Methods, 9(6), 949-957. https://doi.org/10.1039/C6AY02565J
Goboza, M., Meyer, M, Aboua, Y.G., Oguntibeju, O.O. (2020). In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules, 25(23), 1-22. https://doi.org/10.3390/molecules25235546
Hyunseung, L., Yihoon, K., Hira, A., Dong-Min, K., Jaewoon, L., Sujin, L., Sunhwa, J., Suyeon, H., Hyunah, C., Ghilsoo, N., Yun, K. K., Sungsu, L., Sun-Joon, M. (2023). Synthesis and biological evaluation of indane-based fluorescent probes for detection of amyloid-β aggregates in Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 95. https://doi.org/10.1016/j.bmc.2023.117513.
Jassim, E.H., Ameen, S.K.M. (2014). Effect of sucrose and mannitol on Ajmalicine production from leaves induced callus of Catharanthus roseus L. G. Don in vitro. Journal of Biotechnology Research Center, 8, 27–34. DOI: https://doi.org/10.24126/jobrc.2014.8.2.323
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 1-16. https://doi.org/10.1155/2013/162750
Lahare, R.P., Yadav, H.S., Bisen, Y.K., Dashahre, A.K. (2020). An updated review on phytochemical and pharmacological properties of Catharanthus rosea. Saudi Journal of Medical and Pharmaceutical Sciences, 759-766. https://doi.org/10.36348/sjmps.2020.v06i12.007
Lahare, R.P., Yadav, H.S., Bisen, Y.K., Dashahre, A.K. (2021). Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from durg district, Chhattisgarh, India. Schizophrenia Bulletin, 7(1), 1–6. https://doi.org/10.36348/sb.2021.v07i01.001
Lee, D. G., Mok, S. Y., Choi, C., Cho, E. J., Kim, H. Y., & Lee, S. (2012). Analysis of apigenin in Blumea balsamifera Linn DC. and its inhibitory activity against aldose reductase in rat lens. Journal of Agricultural Chemistry and Environment, 1(1), 28-33. https://doi.org/10.4236/jacen.2012.11005
Liu, Q., Liu, H., Zhang, L., Guo, T., Wang, P., Geng, M., & Li, Y. (2013). Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives. European Journal of Medicinal Chemistry, 64, 1-15. https://doi.org/10.1016/j.ejmech.2013.04.016
Liu, C. H., Cheng, W., Hsu, J. P., & Chen, J. C. (2004). Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms, 61(1-2), 169-174. https://doi.org/10.3354/dao061169
Mujib, A., Fatima, S., Malik, M.Q. (2022). Gamma ray-induced tissue responses and improved secondary metabolites accumulation in Catharanthus roseus. Applied Microbiology and Biotechnology, 106 (18), 6109–6123. https://doi.org/10.1007/s00253-022-12122-7
Nguyễn L.T., Trần V. L., Nguyễn Q. V., Trần B. D., Trần V. S. (2012). Nghiên cứu tổng hợp Vinblastin từ Catharanthin và Vindoline chiết tách từ lá Dừa cạn. Tạp chí Hóa học, 50(2), 211-215.
Santos, H. M., Tsai, C. Y., Maquiling, K. R. A., Tayo, L. L., Mariatulqabtiah, A. R., Lee, C. W., & Chuang, K. P. (2020). Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. Aquaculture International, 28(1), 169-185. https://doi.org/10.1007/s10499-019-00451-w
Sharma, S., Vig, A. P., & Singh, S. (2020). Review on flavonoid apigenin: Biological activities and therapeutic potential. Pharmaceutical and Biosciences Journal, 8(1), 1–10.
Shah, P., Modi, H. A., & Shukla, A. (2019). Synergistic antimicrobial activity of plant extract combinations. Journal of Pharmacognosy and Phytochemistry, 8(1), 158–162.
Shetty, R., Singh, P., & Vemula, P. K. (2016). Recent advances in the antibacterial activity of plant-derived alkaloids. Current Topics in Medicinal Chemistry, 16(2), 240–255. https://doi.org/10.1039/d2np00090c
Van, D. H. R., Jacobs, D. I., Snoeijer, W., Hallard, D., & Verpoorte, R. (2004). The Catharanthus alkaloids: pharmacognosy and biotechnology. Current Medicinal Chemistry, 11(5), 607–628. DOI: https://doi.org/10.2174/0929867043455846
Vic M. I. C., Ragasa, C. Y. and Rideout, J. A. (1998). Triterpenes, hydrocarbons and an antimutagenic alkaloid from Catharanthus roseus (Apocynaceae). The Asian International Journal of Life Sciences. 7(1), 11-21. https://www.researchgate.net/publication/235337486
Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larranaga, M.-R., Wang, X., Martínez, M., Anadon, A., Martínez, M.-A. (2021). Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488, 1-15. https://doi.org/10.1016/j.foodchem.2021.129488
Yeo, Y. L., Chia, Y. Y., Lee, C. H., Sow, H. S., & Yap, W. S. (2014). Effectiveness of maceration periods with different extraction solvents on in-vitro antimicrobial activity from fruit of Momordica charantia L. Journal of Applied Pharmaceutical Science, 4, 16-23. https://doi.org/10.7324/JAPS.2014.40104
Zhong, Z., Liu, S., Zhu, W., Ou, Y., Yamaguchi, H., Hitachi, K., Tsuchida, K., Tian, J., Komatsu, S. (2019). Phosphoproteomics reveals the biosynthesis of secondary metabolites in under ultraviolet-B radiation. Journal of Proteome Research, 18, 3328–3341. https://doi.org/10.1021/acs.jproteome.9b00267

Most read articles by the same author(s)