Salicylic acid role on soybean (Glycine max L.) growth in drought stress

Thi Phuong Vo1,
1 IT and Lab Center, Dong Thap University, Vietnam

Main Article Content

Abstract

Salicylic acid (SA) is an endogenous plant growth hormone responsive to drought stress. Therefore, this study was conducted to assess the exogenous SA impact on soybean (Glycine max L.) growth under drought stress conditions. An alcohol-carbohydrate, mannitol, at seven concentrations (0, 20, 25, 30, 35, 40, and 45 g/L) was used to determine the drought condition. The SA supplement in MS medium (0.5; 1.0; 1.5 and 2.0 mg/L) and the seed pretreatment with SA (2, 4, 6, and 8 mg/L) were used. Results showed that applied treatments significantly influenced soybean growth in drought stress condition. The supplement of 1.0 mg/L SA into medium and the seed pretreatment with 6.0 mg/L SA performed superior to improving the seedling growth under the drought stress. The SA presence not only improved the relative water content of leaves but also increased content of chlorophyll a and photosynthesis intensity.

Article Details

References

Antonić, D. D., Subotić, A. R., Dragićević, M. B., Pantelić, D., Milošević, S. M., Simonović, A. D., & Momčilović, I. (2020). Effects of exogenous salicylic acid on drought response and characterization of dehydrins in Impatiens walleriana. Plants, 9(11), 1589.
Aydi, S. S., Aydi, S., Gonzalez, E., & Abdelly, C. (2008). Osmotic stress affects water relations, growth, and nitrogen fixation in Phaseolus vulgaris plants. Acta Physiologiae Plantarum, 30(4), 441-449.
Bandurska, H. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27(3), 379-386.
Chen, Z. L., Li, X. M., & Zhang, L. H. (2014). Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russian Journal of Plant Physiology, 61(5), 619-625.
Coombs, R., Saviotti, P., & Walsh, V. (1987). Economics and technological change. Rowman & Littlefield.
Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental botany, 68(1), 14-25.
Hungria, M., & Mendes, I. C. (2015). Nitrogen fixation with soybean: the perfect symbiosis? In: Biological nitrogen fixation. In Principles of plant-microbe interactions. Springer, Cham.
Jia, F., Peng, S., Green, J., Koh, L., & Chen, X. (2020). Soybean supply chain management and sustainability: A systematic literature review. Journal of Cleaner Production, 255, 120254.
Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., & Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Plantarum, 57(4), 718-724.
Kulpa, D., Gawlik, A., Matuszak-Slamani, R., Włodarczyk, M., Bejger, R., Sienkiewicz, M., Golebiowska, D., & Semeniuk, A. (2018). The effect of mannitol and sorbitol on soybean in vitro development. Folia Pomeranae Universitatis Technologiae Stetinensis, Agricultura, Alimentaria, Piscaria et Zootechnica, 341(46/2), 41-48.
Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Rdox Signaling, 19(9), 998-1011.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.
Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P. M., & Murata, Y. (2013). SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid induced accumulation of reactive oxygen species in A rabidopsis. The Plant Journal, 73(1), 91-104.
Nguyen, T. P. D., Pham, T. A., Tran, A. T. (2016). Effect of Salicylic Acid on Growth of Cucumber (Cucumis sativus L.) Seedlings under Drought Stress. Vietnam J. Agri. Sci., 14(8), 1162-1170.
Nguyen, T. P. D., & Tran, A. T. (2017). Effect of Calcium and Salicylic Acid on Growth of Yardlong Bean under Salt Stress Condition. Vietnam J. Agri. Sci., 15(7), 728-737.
Paquin, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18), 1851-1854.
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.
Sade, N., Galkin, E., & Moshelion, M. (2015). Measuring arabidopsis, tomato and barley leaf relative water content (RWC). Bio-protocol, 5(8), e1451-e1451.
Sadeghipour, O., & Aghaei, P. (2012). Biochemical changes of common bean (Phaseolus vulgaris L.) to pretreatment with salicylic acid (SA) under water stress conditions. International Journal of Biosciences, 2(8), 14-22.
Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34(1), 97-106.
Sharafizad, M., Naderi, A., Siadat, S. A., Sakinejad, T., & Lak, S. (2013). Effect of salicylic acid pretreatment on germination of wheat under drought stress. Journal of Agricultural Science (Toronto), 5(3), 179-199.
Sharma, M., Gupta, S. K., Majumder, B., Maurya, V. K., Deeba, F., Alam, A., & Pandey, V. (2018). Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Plant Physiology and Biochemistry, 130, 529-541.
Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., & Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biology, 20(1), 1-15.
Yusuf, M., Hayat, S., Alyemeni, M. N., Fariduddin, Q., & Ahmad, A. (2013). Salicylic acid: physiological roles in plants. In Salicylic acid. Springer, Dordrecht.