Structures and properties of VB5−/0 clusters from density functional theory calculations

Tran Van Tan1, Ngo Thi Phuoc An2, Tran Thanh Tuan3, Nguyen Thi Hong Hanh1, Nguyen Minh Thao1, Tran Quoc Tri1, Nguyen Hoang Lin4,
1 Department of Physics - Chemistry - Biology Teacher Education, Dong Thap University, Vietnam
2 To Ong Vang Primary School, Dong Thap province, Vietnam
3 Tan Hiep High School, Kien Giang province, Vietnam
4 Mai Thanh The High School, Soc Trang province, Vietnam

Nội dung chính của bài viết

Tóm tắt

Density functional theory with the BPW91 functional and def2-TZVP basis sets was used to investigate the geometric structures of VB5−/0 clusters. By using the bee colony algorithm, 300 initial structures are created for the studied cluster. The geometry optimizations at the BPW91/def2-SVP level result in 18 low-lying isomers in quartet states for the anionic cluster. The results at the BPW91/def2-TZVP level show relative energies and vibrational frequencies for different spin states of 7 isomers of the anionic clusters and 6 isomers of the neutral cluster. It is found that the most stable isomers are A-VB5−/0 with non-planar pentagonal structure. The adiabatic detachment energy of the anionic cluster and the ionization energy of the neutral cluster are 1.93 and 7.36 eV.

Chi tiết bài viết

Tài liệu tham khảo

Becke, A. D. (1988). Density-functional exchange- energy approximation with correct asymptotic- behavior. Physical Review A, 38(6), 3098-3100.
Chen, Q., Zhao, Y., Jiang, L., Li, H., Chen, J., Zhang, T., Liu, Y., & He, S. (2018). Thermal activation of methane by vanadium boride cluster cations VBn+ (n = 3–6). Physical Chemistry Chemical Physics, 20(7), 4641-4645. [10.1039/ c8cp00071a].
Demirci, U., Miele, P., & Yot, P. (2016). Boron- Based (Nano-)Materials: Fundamentals and Applications. Crystals, 6(9), 118. [10.3390/ cryst6090118].
Guo, X. , Fang, G., Li, G., Ma, H., Fan, H., Yu, L., Chao Ma, C., Xing Wu, X., Deng, D., Wei, M., Tan, D., Si, R., Zhang, S., Li, J., Sun, L., Tang, Z., Pan, X., & Bao, X. (2014). Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science, 344(6184), 616-619. [10.1126/science.1253150].
Tran, T. H., Tran, Q. T., & Tran, V. T. (2020). Mechanism of the reaction of VB5+ cluster with methane from density functional theory calculations. Computational and Theoretical Chemistry, 1173, 112701. [10.1016/j.comptc.2020.112701].
Jian, T., Li, W., Chen, X., Chen, T., Lopez, G., Li, J., & Wang, L. (2016a). Competition between drum and quasi-planar structures in RhB18−: motifs for metallo-boronanotubes and metallo- borophenes. Chemical Science, 7(12), 7020- 7027. [10.1039/c6sc02623k].
Jian, T., Li, W., Popov, I., Lopez, G., Chen, X., Boldyrev, A., Li, Z., & Wang, L. (2016b). Manganese-centered tubular boron cluster – MnB16−: A new class of transition-metal molecules. The Journal of Chemical Physics, 144(15), 154310. [10.1063/1.4946796].
Karakaya, C., & Kee, R. J. (2016). Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 55, 60-97. [10.1016/j.pecs.2016.04.003].
Mananghaya, M., Yu, D., & Santos, G. (2016). Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals. International Journal of Hydrogen Energy, 41(31), 13531-13539. [10.1016/j. ijhydene.2016.05.225].
Nikolaienko, T. Y. Bulavin, L., & Hovorun, D. (2014). JANPA: An open source cross-platform implementation of the Natural Population Analysis on the Java platform. Computational and Theoretical Chemistry, 1050, 15-22. [10.1016/j.comptc.2014.10.002].
Tran, V. T., & Tran, Q. T. (2019). Geometric and Electronic Structures of VB40/+ Clusters and Reactivity of the Cationic Cluster with Methane from Quantum Chemical Calculations. The Journal of Physical Chemistry A, 123(42), 9223-9233. [10.1021/acs.jpca.9b08536].
Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van-Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L., & Jong, W. A. (2010). NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. Computer Physics Communications, 181(9), 1477-1489. [http://dx.doi.org/10.1016/j.cpc.2010.04.018].
Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305.
Zhang, J., & Dolg, M. (2015). ABCluster: the Artificial Bee Colony Algorithm for Cluster Global Optimization. Physical Chemistry Chemical Physics, 17(37), 24173-24181. [10.1039/c5cp04060d].
Zhang, Z., Zhang, Z., & Yakobson, B. I. (2017). Two-dimensional boron: structures, properties and applications. Chemical Society Reviews, 46(22), 6746-6763. [10.1039/c7cs00261k].
Zhou, Y., Zhang, L., & Wang, W. (2019). Direct functionalization of methane into ethanol over copper modifi ed polymeric carbon nitride via photocatalysis. Nature Communications, 10(1). [10.1038/s41467-019-08454-0].