A CASSCF/CASPT2 investigation on the electronic states of MnB20/−/+ clusters

Thi My Nhan Tran1, Minh Thao Nguyen2, Quoc Tri Tran2, Van Tan Tran2
1 Student, Dong Thap University
2 Dong Thap University

Main Article Content

Abstract

This study investigated the geometrical and electronic structures of MnB20/−/+ clusters with the multiconfigurational CASSCF/CASPT2 method. The leading configuration, structural parameters, and relative energies of the low-lying states of the studied clusters are reported. The results indicated that the wave functions of low-lying states show a strong multi-reference property. The triangle isomer is predicted to be more stable than the linear one in both neutral and anionic clusters. Meanwhile, in cationic clusters the triangle and linear isomers have almost the same stability. The calculated ionization energy and electron affinity of the neutral ground state are 7.76 and 1.42 eV, respectively. By adding one B atom to MnB cluster, the obtained triangular-MnB2 cluster has higher stability than that of MnB cluster in anti-oxidation and anti-reduction.

Article Details

References

[1]. Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Liviu F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schapiro, Javier Segarra-Martí, Michael Stenrup, Donald G. Truhlar, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Victor P. Vysotskiy, Oliver Weingart, Felipe Zapata, Roland Lindh (2016), “Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table”, Journal of Computational Chemistry, 37 (5), pp. 506-541.
[2]. Nikolai B Balabanov, Kirk A Peterson (2005), “Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn”, Journal of Chemical Physics, 123(6), pp. 064107.
[3]. Q. Chen, Y. X. Zhao, L. X. Jiang, H. F. Li, J. J. Chen, T. Zhang, Q. Y. Liu, S. G. He (2018), “Thermal activation of methane by vanadium boride cluster cations VBn+(n = 3-6)”, Physical Chemistry Chemical Physics, 20(7), pp. 4641-4645.
[4]. Feng Cui-Ju, M. I. Bin-Zhou (2016), “Configurations and magnetic properties of Mn–B binary clusters”, Journal of Magnetism and Magnetic Materials, (405), pp. 117-121.
[5]. Huỳnh Bạch Phúc Hậu, Nguyễn Minh Thảo, Phan Trung Cang, Trần Quốc Trị, Trần Văn Tân (2018), “Nghiên cứu các trạng thái electron của các cluster MnB0/−/+ bằng phương pháp tính đa cấu hình CASSCF/CASPT2”, Tạp chí Khoa học Đại học Đồng Tháp, (số 30), tr. 95-101.
[6]. Tian Jian, Wan-Lu Li, Ivan A. Popov, Gary V. Lopez, Xin Chen, Alexander I. Boldyrev, Jun Li, Lai-Sheng Wang (2016), “Manganese-centered tubular boron cluster - MnB16−: A new class of transition-metal molecules”, Journal of Chemical Physics, 144(15), pp. 154310.
[7]. Xia Liu, Gao-feng Zhao, Ling-ju Guo, Qun Jing, You-hua Luo (2007), “Structural, electronic, and magnetic properties of MBn (M= Cr, Mn, Fe, Co, Ni, n≤7) clusters”, Physical Review A, 75(6), pp. 063201.
[8]. Ivan A. Popov, Tian Jian, Gary V. Lopez, Alexander I. Boldyrev, Lai-Sheng Wang (2015), “Cobalt-centred boron molecular drums with the highest coordination number in the CoB16− cluster”, Nature Communications, (6), pp. 8654.
[9]. Constantin Romanescu, Timur R. Galeev, Alina P. Sergeeva, Wei-Li Li, Lai-Sheng Wang, Alexander I. Boldyrev (2012), “Experimental and computational evidence of octa- and nona- coordinated planar iron-doped boron clusters: Fe©B8− and Fe©B9−”, Journal of Organometallic Chemistry, (721-722), pp. 148-154.
[10]. Van Tan Tran, Marc F. A. Hendrickx (2014), “Molecular and electronic structures of the NbC2−/0 clusters through the assignment of the anion photoelectron spectra by quantum chemical calculations”, Chemical Physics Letters, (609), pp. 98-103.
[11]. Van Tan Tran, Christophe Iftner, Marc F. A. Hendrickx (2013), “Quantum chemical study of the electronic structures of MnC2−/0 clusters and interpretation of the anion photoelectron spectra”, Chemical Physics Letters, (575).
[12]. Demeter Tzeli, Aristides Mavridis (2008), “Electronic structure and bonding of the 3d transition metal borides, MB, M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations”, Journal of Chemical Physics, 128(3), pp. 034309.
[13]. Alejandro Varas, F Aguilera-Granja, José Rogan, Miguel Kiwi (2015), “Structural, electronic, and magnetic properties of FexCoyNiz (x+ y+ z= 13) clusters: A density-functional-theory study”, Journal of Magnetism and Magnetic Materials, (394), pp. 325-334.
[14]. David E. Woon, Thom H. Dunning Jr (1993), “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon”, Journal of Chemical Physics, 98(2), pp. 1358-1371.
[15]. Chunhong Xu, Kuo Bao, Shuailing Ma, Yanbin Ma, Shuli Wei, Ziji Shao, Xuehui Xiao, Xiaokang Feng, Tian Cui (2017), “A first-principles investigation of a new hard multi-layered MnB2 structure”, RSC Advances, 7(17), pp. 10559-10563.

Most read articles by the same author(s)