Nano spinel Li4Mn5O12 material synthesized by hydrothermal method

Minh Thao Nguyen1, Minh Xuan Pham1
1 Dong Thap University

Main Article Content

Abstract

Li4Mn5O12 material has been successfully synthesized by hydrothermal method. Synthesis conditions are: Li:Mn molar ratio 5:3, temperature at 120oC, 216 hours, calcinating at 500oC for 6 hours. The obtained material was analysed its components, characterized by X-ray diffraction (XRD), flame atomic adsorption spectrometry (F-AAS), Fourier transform infrared spectroscopy (FT-IR), Total Carbon (TC), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Cyclic Voltammetry technique (CV). The obtained Li4Mn5O12 material has spinel structure (Fd3m), crystal size in 40-60 nm, Li:Mn ratio ~ 0,798, average valence of Mn in product is 3.98 ± 0.02. Li-ions can reversibly insert-extract in Li4Mn5O12 material in well.

Article Details

References

[1]. Lâm Thị Xuân Bình, Lê Mỹ Loan Phụng, Nguyễn Thị Phương Thoa (2009), “Bước đầu điều chế và khảo sát vật liệu Spinel Liti-Mangan-Oxit làm cực dương cho pin sạc Liti-Ion”, Tạp chí Phát triển Khoa học & Công nghệ - Đại học Quốc gia Thành phố Hồ Chí Minh, Tập 12 (Số 10), tr. 64-71.
[2]. Burton, A. W., Ong, K., Rea, T., Chan, I. Y. (2009), “On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one- dimensional pore systems”, Microporous and Mesoporous Materials, 117 (1-2), p. 75-90.
[3]. Feng, Q., Higashimoto, Y., Kajiyoshi, K., Yanagisawa, K. (2001), “Synthesis of lithium manganese oxides from layered manganese oxides by hydrothermal soft chemical process”, Journal of Materials Science Letters, 20 (3), p. 269-271.
[4]. Feng, Q., Kanoh, H., Miyai, Y., Ooi, K. (1995), “Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions”, Chemistry of Materials, 7 (6), p. 1226-1232.
[5]. Fu, Y., Jiang, H., Hu, Y., Zhang, L., Li, C. (2014), “Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries”, Journal of Power Sources, (261), p. 306-310.
[6]. Hon, Y. M., Lin, S. P., Fung, K. Z., Hon, M. H. (2002), “Synthesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process”, Journal of the European Ceramic Society, 22 (5), p. 653-660.
[7]. Takada, T., Hayakawa, H., Akiba, E. (1995), “Preparation and Crystal Structure Refi nement of Li4Mn5O12 by the Rietveld Method”, Journal of Solid State Chemistry, 115 (2), p. 420-426.
[8]. Thackeray, M. M., de Picciotto, L. A., de Kock, A., Johnson, P. J., Nicholas, V. A., Adendorff, K. T. (1987), “Spinel electrodes for lithium batteries — A review”, Journal of Power Sources, 21 (1), p. 1-8.
[9]. Wu, H. M., Tu, J. P., Yuan, Y. F., Chen, X. T., Xiang, J. Y., Zhao, X. B., Cao, G. S. (2006), “One-step synthesis LiMn2O4 cathode by a hydrothermal method”, Journal of Power Sources, 161 (2), p. 1260-1263.
[10]. Zhang, Y., Wang, H., Wang, B., Yan, H., Ahniyaz, A., Yoshimura, M. (2002), “Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method”, Materials Research Bulletin, 37 (8), p. 1411-1417.

Most read articles by the same author(s)