Calculations on the structures of ScGenSc0/- (n = 3, 4) clusters

Minh Thao Nguyen1,2,, Tho Thanh Bui2, Sy Thang Ho3, Van Hung Nguyen1, Huu Nghi Nguyen4
1 IT and Lab Center, Dong Thap University, Vietnam
2 University of Science, Vietnam National University Ho Chi Minh City, Vietnam
3 Graduate Studies Office, Dong Thap University, Vietnam
4 Center for Training Partnership and Professional Development, Dong Thap University, Vietnam

Main Article Content

Abstract

The structures of ScGenSc0/- (n = 3, 4) clusters were investigated by a combination of quantum chemical calculations, including the genetic algorithm (GA), the Perdew-Burke-Ernzerhof PBE functional, and coupled- cluster calculations (CCSD(T)). The geometrical structure, relative energy, harmonic vibrational frequency, adiabatic detachment energies were reported. The PBE functional is in good agreement with the CCSD(T) method. The stable structure of the SiGenSc0/− (n = 3, 4) clusters have a low spin multiplicity. The larger cluster can be formed by adsorbing the atom into the smaller cluster. The obtained results can contribute to the orientation of the nanomaterial formation for gas adsorption.

Article Details

References

Abel, P. R., Chockla, A. M., Lin, Y.-M., Holmberg, V. C., Harris, J. T., Korgel, B. A., Heller, A., & Mullins, C. B. (2013). Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes. J. Am. Chem. Soc., 7(3), 2249-2257.
Oganov, A. R., Lyakhov, A. O., & Valle, M. (2011). How Evolutionary Crystal Structure Prediction Work and Why. Acc. Chem. Res., 44(3).
Oganov, A. R., & Glass, C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys., 124(24).
Atobe, J., Koyasu, K., Furuse, S., & Nakajima, A. (2012). Anion photoelectron spectroscopy of germanium and tin clusters containing a transition-or lanthanide-metal atom; MGen−(n = 8-20) and MSnn−(n = 15-17)(M = Sc-V, Y-Nb, and Lu-Ta). J. Phys. Chem., 14(26), 9403-9410.
Biswas, S., Barth, S., & Holmes, J. D. (2017). Inducing imperfections in germanium nanowires. Nano Res., 10, 1-14.
Borshch, N., Pereslavtseva, N., & Kurganskii, S. (2015). Spatial structure and electron energy spectra of ScGen− (n = 6-16) clusters. Russ. J. Phys. Chem. B, 9(1), 9-18.
Carolan, D. (2017). Recent advances in germanium nanocrystals: Synthesis, optical properties and applications. Prog. Mater Sci., 90 (Supplement C), 128-158.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., & Dal Corso, A. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter., 21(9), 395502.
Hussein, H. A, & Johnston, R. L. (2019). The DFT-genetic algorithm approach for global optimization of subnanometer bimetallic clusters, in Frontiers of Nanoscience, Elsevier, 145-169.
Jennings, P., & Johnston, R. (2013). Structures of small Ti-and V-doped Pt clusters: A GA-DFT study. Comput. Theor. Chem., 1021, 91-100.
Liu, Y., Yang, J., & Cheng, L. (2018). Structural Stability and Evolution of Scandium-Doped Silicon Clusters: Evolution of Linked to Encapsulated Structures and Its Influence on the Prediction of Electron Affinities for ScSi n (n = 4-16) Clusters. Inorg Chem, 57(20), 12934-12940.
Lu, J., Yang, J., Kang, Y., & Ning, H. (2014). Probing the electronic structures and properties of neutral and anionic ScSin(0,−1) (n = 1-6) clusters using ccCA-TM and G4 theory. J. Mol. Model., 20(2), 2114.
Lu, W., Xiang, J., Timko, B. P., Wu, Y., & Lieber, C. M. (2005). One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc Natl Acad Sci U S A, 102(29), 10046-10051.
Lyakhov, A. O., Oganov, A. R., Stokes, H. T., & Zhu, Q. (2013). New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun., 184(4), 1172-1182.
McVey, B. F. P., Prabakar, S., Gooding, J. J., & Tilley, R. D. (2017). Solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium nanocrystals. ChemPlusChem, 82(1), 60-73.
Nahali, M., & Gobal, F. (2010). Adsorption of carbon monoxide on SixGe4-x (x= 0-4) nano- clusters: a hybrid meta density functional study. Mol. Phys., 108(10), 1317-1327.
Nakata, M., Toko, K., Jevasuwan, W., Fukata, N., Saitoh, N., Yoshizawa, N., & Suemasu, T. (2015). Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates. Applied Physics Letters, 107(13).
Neese, F. (2012). The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci, 2(1), 73-78.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865-3868.
Pham, H. T., Pham-Ho, M. P., & Nguyen, M. T. (2019). Impressive capacity of the B7− and V2B7 clusters for CO2 capture. Chemical Physics Letters, 728, 186-194.
Sajjad, S., Hashmi, M. A., Mahmood, T., & Ayub, K. (2019). Density functional theory study of structural, electronic and CO adsorption properties of anionic Scn− (n = 2-13) clusters. Comput. Theor. Chem., 1163, 112511.
Varandas, A. J. C. (2021). Canonical and explicitly- correlated coupled cluster correlation energies of sub-kJ mol−1 accuracy via cost-effective hybrid- post-CBS extrapolation. Physical Chemistry Chemical Physics, 23(15), 9571-9584.
Wielgus, P., Roszak, S., Majumdar, D., Saloni, J., & Leszczynski, J. (2008). Theoretical studies on the bonding and thermodynamic properties of GenSim (m+n=5) clusters: the precursors of germanium/silicon nanomaterials. J. Chem. Phys., 128(14), 144305.
Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., & Lieber, C. M. (2006). Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 441(7092), 489-93.
Zhou, S., Yang, X., Shen, Y., King, R. B., & Zhao, J. (2019). Dual transition metal doped germanium clusters for catalysis of CO oxidation. J. Alloys Compd., 806, 698-704.

Most read articles by the same author(s)

1 2 > >>