Investigating the effect of rice endophytic bacteria on some common rice varieties cutivated in the Mekong Delta region at their vegetative phase

Thi Pha Nguyen1,, Van Be Nam Tran1, Dinh Gioi Tran2
1 Can Tho University
2 Cuu Long Delta Rice Research Institute

Main Article Content


Rice production in the Mekong Delta mainly uses chemical fertilizers, which increases the production cost and decreases the soil fertile. This research surveyed the effect of 4 endophytic bacterial strains NS01, NS08, NS17 and NS25 with their ability of NH4collected and phosphorus solution on the growth of rice varieties IR50404, OM4900 và OM5451 at their vegetative phase. It shows that IR50404 rice variety combined with NS25 bacterial strain get the best results regarding chlorophyll content, plant height, root length, number of root and dried matter weight. On analyzing the 16S rDNA region, NS25 strain is found to belong to Bacillus genus.

Article Details


[1]. Ben J., C. Wolf, and W. Rudiger (1980), Chlorophyll biosynthesis hydrogenation of genanyl genaniol, Plant Sci Lett, (19), p. 225-230
[2]. Lăng Ngọc Dậu, Nguyễn Thị Xuân Mỵ và Cao Ngọc Điệp (2007), Khả năng cố định đạm và hòa tan lân và sinh tổng hợp IAA vi khuẩn Azospirillum lipoferum, Những vấn đề nghiên cứu cơ bản trong Khoa học Sự sống, tr. 245-251.
[3]. Hallmann J., A. Quadt-Hallmann, W. F. Mahaffee and J. W. Kloepper (1997), Bacterial endophytes in agricultural crops, Can. J. Microbiol, (43), p. 895-914.
[4]. Hongrittipun P., S. Youpensuk and B. Rerkasem (2014), Screening of Nitrogen Fixing Endophytic Bacteria in Oryza sativa L., Journal of Agricultural Science, (60), p. 66-74.
[5]. Kaushik B. D., A. K. Saxena and R. Prasanna (2004), Techniques in Microbiology, A Laboratory Manual for Post Graduate students, Publs. Director IARI.
[6]. Martínez-Rodríguez, J. C, M. De la Mora-Amutio, L. A. Plascencia-Correa, E. Audelo-Regalado, F. R. Guardado, E. Hernández-Sánchez, Y. J. Peña-Ramírez, A. Escalante, M. J. Beltrán-García and T. Ogura (2015), Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters, Braz J Microbiol, (4), p. 1333-1339.
[7]. Natalia, M., F. Kamilova, S. Validov, A. Shcherbakov, V. Chebotar, I. Tikhonovich, and B. Lugtenberg (2011), Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed, Microb Biotechnol, (4), p. 523-532.
[8]. Page, L., R. H. Miller and R. D. Keeney (1982), Methods for Soils Analysis, Part 2, Chemical and Microbial properties, 2 nd edition, American Society of Agronomy Incorporation, 677 South Segoe Road, Madison, Wisconsin 53711 USA.
[9]. Nguyễn Thị Pha (2015), Khảo sát tương tác giữa vi khuẩn nội sinh cây lúa và một số giống lúa trồng phổ biến vùng Đồng Bằng Sông Cửu Long, Báo cáo tổng kết đề tài Nghiên cứu khoa học cấp Trường, Trường Đại Học Cần Thơ.
[10]. Syed G. D., Deepa C. K., and A. Pandey (2011), Growth enhancement of black pepper (Piper nigrum. L) by a newly isolated Bacillus tequilensis NII-0943, Biologia, (5), p. 801-806
[11]. Weisberg, W. G., S. M. Barns, B. A. Pelletier and D. J. Lane (1991), 16S ribosomal DNA amplification for phylogenetic study, Journal Bacteriol, (173), p. 697-703.
[12]. Xuan, L. N. T., T. V. Dung, N. N. Hung, C. N. Diep (2016), Isolation And Characterization Of Rhizospheric Bacteria In Rice (Oryza Sativa L.) Cultivated On Acid Sulphate Soils Of The Mekong Delta, Vietnam, World Journal Of Pharmacy And Pharmaceutical Sciences, (5), p. 343-358.
[13]. Yoshida, S., D. Forno, J. Cock and K. Gomez (1976), Laboratory Manual for Physiological Studies of Rice, The international rice research institute, p. 62-64.