The Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces
Main Article Content
Abstract
The purpose of this study is to prove Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces. As a consequence of the main result, we get an outcome on the stability of such functional equations in Banach spaces.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Quasi-Banach space, radical functional equation, Ulam-Hyers stability
References
Aoki, T. (1942). Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, no. 10, 588– 594.
Eskandani, G. Z. (2008). On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 345, no. 1, 405–409.
Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, no. 4, 222.
Kalton, N. (2003). Quasi-Banach spaces, Handbook of the geometry of Banach spaces, vol. 2, Elsevier,1099–1130.
Kalton, N. J., Peck. N. T., & Roberts, J. W. (1984). An -space sampler, London Math. Soc. Lecture Note Ser. 89.
Maligranda, L. (2008). Tosio Aoki (1910-1989), International symposium on Banach and function spaces: 14/09/2006-17/09/2006, Yokohama Publishers, 1–23.
Najati, A., & Moghimi, M. (2008). Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337, no. 1, 399–415.
Nguyen, V. D., & Vo, T. L. H. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 462, no. 1, 131–147.
Nguyen, V. D., & Nguyen, T. T. L. (2021). The approximation by the pertinent Euler-Lagrange-Jensen generalized quintic functional maps in quasi-Banach spaces, Filomat 35, no. 4, 1215–1231.
Nguyen, V. D., & Sintunavarat, W. (2019). Ulam-Hyers stability of functional equations in quasi- -Banach spaces, Ulam Type Stability, 97–130.
Ulam, S. M. (1960). Problems in modern mathematics, New York: Science Editions, Wiley.
Eskandani, G. Z. (2008). On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 345, no. 1, 405–409.
Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, no. 4, 222.
Kalton, N. (2003). Quasi-Banach spaces, Handbook of the geometry of Banach spaces, vol. 2, Elsevier,1099–1130.
Kalton, N. J., Peck. N. T., & Roberts, J. W. (1984). An -space sampler, London Math. Soc. Lecture Note Ser. 89.
Maligranda, L. (2008). Tosio Aoki (1910-1989), International symposium on Banach and function spaces: 14/09/2006-17/09/2006, Yokohama Publishers, 1–23.
Najati, A., & Moghimi, M. (2008). Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337, no. 1, 399–415.
Nguyen, V. D., & Vo, T. L. H. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 462, no. 1, 131–147.
Nguyen, V. D., & Nguyen, T. T. L. (2021). The approximation by the pertinent Euler-Lagrange-Jensen generalized quintic functional maps in quasi-Banach spaces, Filomat 35, no. 4, 1215–1231.
Nguyen, V. D., & Sintunavarat, W. (2019). Ulam-Hyers stability of functional equations in quasi- -Banach spaces, Ulam Type Stability, 97–130.
Ulam, S. M. (1960). Problems in modern mathematics, New York: Science Editions, Wiley.
Most read articles by the same author(s)
- Thi Thanh Ly Nguyen, A common fixed point theorem for weakly tangential maps in b-metric spaces , Dong Thap University Journal of Science: No. 15 (2015): Part B - Natural Sciences
- Thi Thanh Ly Nguyen, The existence of common fixed point for generalized rational contraction mappings in b-metric spaces , Dong Thap University Journal of Science: No. 32 (2018): Part B - Natural Sciences