The Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces

Thi Thanh Ly Nguyen1,2,
1 Faculty of Mathematics and Computer Science, University of Science, Vietnam National University Ho Chi Minh City, Vietnam
2 Faculty of Mathematics - Informatics Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Main Article Content

Abstract

The purpose of this study is to prove Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces. As a consequence of the main result, we get an outcome on the stability of such functional equations in Banach spaces.

Article Details

References

Aoki, T. (1942). Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, no. 10, 588– 594.
Eskandani, G. Z. (2008). On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 345, no. 1, 405–409.
Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, no. 4, 222.
Kalton, N. (2003). Quasi-Banach spaces, Handbook of the geometry of Banach spaces, vol. 2, Elsevier,1099–1130.
Kalton, N. J., Peck. N. T., & Roberts, J. W. (1984). An -space sampler, London Math. Soc. Lecture Note Ser. 89.
Maligranda, L. (2008). Tosio Aoki (1910-1989), International symposium on Banach and function spaces: 14/09/2006-17/09/2006, Yokohama Publishers, 1–23.
Najati, A., & Moghimi, M. (2008). Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337, no. 1, 399–415.
Nguyen, V. D., & Vo, T. L. H. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 462, no. 1, 131–147.
Nguyen, V. D., & Nguyen, T. T. L. (2021). The approximation by the pertinent Euler-Lagrange-Jensen generalized quintic functional maps in quasi-Banach spaces, Filomat 35, no. 4, 1215–1231.
Nguyen, V. D., & Sintunavarat, W. (2019). Ulam-Hyers stability of functional equations in quasi- -Banach spaces, Ulam Type Stability, 97–130.
Ulam, S. M. (1960). Problems in modern mathematics, New York: Science Editions, Wiley.