The Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces
Nội dung chính của bài viết
Tóm tắt
The purpose of this study is to prove Ulam-Hyers stability of 2-variable radical functional equations in quasi-Banach spaces. As a consequence of the main result, we get an outcome on the stability of such functional equations in Banach spaces.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Quasi-Banach space, radical functional equation, Ulam-Hyers stability
Tài liệu tham khảo
Aoki, T. (1942). Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, no. 10, 588– 594.
Eskandani, G. Z. (2008). On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 345, no. 1, 405–409.
Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, no. 4, 222.
Kalton, N. (2003). Quasi-Banach spaces, Handbook of the geometry of Banach spaces, vol. 2, Elsevier,1099–1130.
Kalton, N. J., Peck. N. T., & Roberts, J. W. (1984). An -space sampler, London Math. Soc. Lecture Note Ser. 89.
Maligranda, L. (2008). Tosio Aoki (1910-1989), International symposium on Banach and function spaces: 14/09/2006-17/09/2006, Yokohama Publishers, 1–23.
Najati, A., & Moghimi, M. (2008). Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337, no. 1, 399–415.
Nguyen, V. D., & Vo, T. L. H. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 462, no. 1, 131–147.
Nguyen, V. D., & Nguyen, T. T. L. (2021). The approximation by the pertinent Euler-Lagrange-Jensen generalized quintic functional maps in quasi-Banach spaces, Filomat 35, no. 4, 1215–1231.
Nguyen, V. D., & Sintunavarat, W. (2019). Ulam-Hyers stability of functional equations in quasi- -Banach spaces, Ulam Type Stability, 97–130.
Ulam, S. M. (1960). Problems in modern mathematics, New York: Science Editions, Wiley.
Eskandani, G. Z. (2008). On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 345, no. 1, 405–409.
Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, no. 4, 222.
Kalton, N. (2003). Quasi-Banach spaces, Handbook of the geometry of Banach spaces, vol. 2, Elsevier,1099–1130.
Kalton, N. J., Peck. N. T., & Roberts, J. W. (1984). An -space sampler, London Math. Soc. Lecture Note Ser. 89.
Maligranda, L. (2008). Tosio Aoki (1910-1989), International symposium on Banach and function spaces: 14/09/2006-17/09/2006, Yokohama Publishers, 1–23.
Najati, A., & Moghimi, M. (2008). Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337, no. 1, 399–415.
Nguyen, V. D., & Vo, T. L. H. (2018). The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 462, no. 1, 131–147.
Nguyen, V. D., & Nguyen, T. T. L. (2021). The approximation by the pertinent Euler-Lagrange-Jensen generalized quintic functional maps in quasi-Banach spaces, Filomat 35, no. 4, 1215–1231.
Nguyen, V. D., & Sintunavarat, W. (2019). Ulam-Hyers stability of functional equations in quasi- -Banach spaces, Ulam Type Stability, 97–130.
Ulam, S. M. (1960). Problems in modern mathematics, New York: Science Editions, Wiley.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Thị Thanh Lý, Định lí điểm bất động chung cho hai ánh xạ trơn yếu trên không gian b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 15 (2015): Phần B - Khoa học Tự nhiên
- Nguyễn Thị Thanh Lý, Sự tồn tại điểm bất động chung cho ánh xạ co dạng hữu tỉ suy rộng trên không gian b-metric , Tạp chí Khoa học Đại học Đồng Tháp: Số 32 (2018): Phần B - Khoa học Tự nhiên