An investigation of the geometrical and electronic structures of MnB0/−/+ clusters by multiconfigurational CASSCF/CASPT2 method

Bach Phuc Hau Huynh1, Minh Thao Nguyen1,2, Trung Cang Phan1, Quoc Tri Tran1, Van Tan Tran1
1 Dong Thap University
2 University of Scieence, Vietnam National University Ho Chi Minh city

Main Article Content

Abstract

The geometrical and electronic structures of MnB0/−/+ clusters were investigated using the multiconfigurational CASSCF/CASPT2 method. The potential energy curves of the low-lying electronic states were built. The obtained results such as electron configurations, bond distances, harmonic vibrational frequencies, relative energies, electron affinity, and ionization energy of MnB cluster were reported. These results showed that the wave functions of the low-lying electronic states of MnB0/−/+ had a strong multiconfigurational property.

Article Details

References

[1]. Anastassia N. Alexandrova, Alexander I. Boldyrev, Hua-Jin Zhai and Lai-Sheng Wang (2006), “All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry”, Coordination Chemistry Reviews, (250), p. 2811-2866.
[2]. Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Liviu F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schapiro, Javier Segarra-Martí, Michael Stenrup, Donald G. Truhlar, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Victor P. Vysotskiy, Oliver Weingart, Felipe Zapata and Roland Lindh (2016), “Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table”, Journal of Computational Chemistry, (37), p. 506-541.
[3]. Nikolai B. Balabanov and Kirk A. Peterson (2005), “Systematically Convergent Basis Sets for Transition Metals. I. All-Electron Correlation Consistent Basis Sets for the 3d Elements Sc–Zn”, The Journal of Chemical Physics, (123), p. 064107.
[4]. Maria Barysz and Miroslav Urban (1997), “Molecular Properties of Boron-Coinage Metal Dimers: BCu, BAg, BAu”, Advances in Quantum Chemistry, (28), p. 257-272.
[5]. Ihsan Boustani (1995), “Structure and Stability of Small Boron Clusters. A Density Functional Theoretical Study”, Chemical Physics Letters, (240), p. 135-140.
[6]. Thom H. Dunning (1989), “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen”, The Journal of Chemical Physics, (90), p. 1007-1023.
[7]. Gui-xian Ge, Qun Jing, Hai-bin Cao and Hong-xia Yan (2012), “Structural, Electronic, and Magnetic Properties of MBn (M= Y, Zr, Nb, Mo, Tc, Ru, n≤ 8) Clusters”, Journal of Cluster Science, (23), p. 189-202.
[8]. A. S. Ivanov, X. Zhang, H. Wang, A. I. Boldyrev, G. Gantefoer, K. H. Bowen and I. Černušák (2015), “Anion Photoelectron Spectroscopy and CASSCF/CASPT2/RASSI Study of Lan– (n = 1, 3–7)”, The Journal of Physical Chemistry A, (119), p. 11293-11303.
[9]. Jianfeng Jia, Lijuan Ma, Jian-Feng Wang and Hai-Shun Wu (2013), “Structures and Stabilities of ScBn (n = 1–12) Clusters: an Ab Initio Investigation”, Journal of Molecular Modeling, (19), p. 3255-3261.
[10]. R. L. Johnston (2002), Atomic and Molecular Clusters, Taylor & Francis, London; New York.
[11]. Wei-Li Li, Qiang Chen, Wen-Juan Tian, Hui Bai, Ya-Fan Zhao, Han-Shi Hu, Jun Li, Hua- Jin Zhai, Si-Dian Li and Lai-Sheng Wang (2014), “The B35 Cluster with a Double-Hexagonal Vacancy: A New and More Flexible Structural Motif for Borophene”, Journal of the American Chemical Society, (136), p. 12257-12260.
[12]. Xia Liu, Gao-feng Zhao, Ling-ju Guo, Qun Jing and You-hua Luo (2007), “Structural, Electronic, and Magnetic Properties of MBn (M= Cr, Mn, Fe, Co, Ni, n ≤ 7) Clusters”, Physical Review A, (75), p. 063201.
[13]. Quoc Tri Tran and Van Tan Tran (2016), “Quantum Chemical Study of the Geometrical and Electronic Structures of ScSi3−/0 Clusters and Assignment of the Anion Photoelectron Spectra”, The Journal of Chemical Physics, (144), p. 214305.
[14]. Van Tan Tran and Marc F. A. Hendrickx (2011), “Assignment of the Photoelectron Spectra of FeS3– by Density Functional Theory, CASPT2, and RCCSD(T) Calculations”, The Journal of Physical Chemistry A, (115), p. 13956-13964.
[15]. Van Tan Tran, Quoc Tri Tran and Marc F. A. Hendrickx (2015), “On the Multi-Reference Character of the Low-Lying States of the MnS−/0 Clusters by the NEVPT2 Assignment of the Anion Photoelectron Spectrum”, Chemical Physics Letters, (627), p. 121-125.
[16]. Van Tan Tran, Quoc Tri Tran and Marc F. A. Hendrickx (2015), “Geometric and Electronic Structures for MnS2–/0 Clusters by Interpreting the Anion Photoelectron Spectrum with Quantum Chemical Calculations”, The Journal of Physical Chemistry A, (119), p. 5626-5633.
[17]. Van Tan Tran and Quoc Tri Tran (2016), “Geometrical and Electronic Structures of MnS3–/0 Clusters from Computational Chemistry and Photoelectron Spectroscopy”, The Journal of Physical Chemistry A, (120), p. 3670-3676.
[18]. Demeter Tzeli and Aristides Mavridis (2008), “Electronic Structure and Bonding of the 3d Transition Metal Borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all Electron Ab Initio Calculations”, The Journal of Chemical Physics, (128), p. 034309.