Nghiên cứu các trạng thái electron của các cluster MnB0/-/+ bằng phương pháp tính đa cấu hình CASSCF/CASPT2
Nội dung chính của bài viết
Tóm tắt
Cấu trúc hình học và cấu trúc electron của cluster MnB0/−/+ được nghiên cứu bằng phương pháp tính đa cấu hình CASPT2. Đường cong thế năng của các trạng thái electron được xây dựng. Các kết quả tính được như cấu hình electron, độ dài liên kết, tần số dao động điều hòa, năng lượng tương đối, ái lực electron và năng lượng ion hóa của các cluster được báo cáo. Các kết quả tính được cho thấy hàm sóng của các trạng thái electron của các cluster MnB0/−/+có tính chất đa cấu hình rất mạnh.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Cấu trúc hình học, cấu trúc electron, phương pháp CASSCF/CASPT2, cluster MnB0/−/
Tài liệu tham khảo
[2]. Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Liviu F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schapiro, Javier Segarra-Martí, Michael Stenrup, Donald G. Truhlar, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Victor P. Vysotskiy, Oliver Weingart, Felipe Zapata and Roland Lindh (2016), “Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table”, Journal of Computational Chemistry, (37), p. 506-541.
[3]. Nikolai B. Balabanov and Kirk A. Peterson (2005), “Systematically Convergent Basis Sets for Transition Metals. I. All-Electron Correlation Consistent Basis Sets for the 3d Elements Sc–Zn”, The Journal of Chemical Physics, (123), p. 064107.
[4]. Maria Barysz and Miroslav Urban (1997), “Molecular Properties of Boron-Coinage Metal Dimers: BCu, BAg, BAu”, Advances in Quantum Chemistry, (28), p. 257-272.
[5]. Ihsan Boustani (1995), “Structure and Stability of Small Boron Clusters. A Density Functional Theoretical Study”, Chemical Physics Letters, (240), p. 135-140.
[6]. Thom H. Dunning (1989), “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen”, The Journal of Chemical Physics, (90), p. 1007-1023.
[7]. Gui-xian Ge, Qun Jing, Hai-bin Cao and Hong-xia Yan (2012), “Structural, Electronic, and Magnetic Properties of MBn (M= Y, Zr, Nb, Mo, Tc, Ru, n≤ 8) Clusters”, Journal of Cluster Science, (23), p. 189-202.
[8]. A. S. Ivanov, X. Zhang, H. Wang, A. I. Boldyrev, G. Gantefoer, K. H. Bowen and I. Černušák (2015), “Anion Photoelectron Spectroscopy and CASSCF/CASPT2/RASSI Study of Lan– (n = 1, 3–7)”, The Journal of Physical Chemistry A, (119), p. 11293-11303.
[9]. Jianfeng Jia, Lijuan Ma, Jian-Feng Wang and Hai-Shun Wu (2013), “Structures and Stabilities of ScBn (n = 1–12) Clusters: an Ab Initio Investigation”, Journal of Molecular Modeling, (19), p. 3255-3261.
[10]. R. L. Johnston (2002), Atomic and Molecular Clusters, Taylor & Francis, London; New York.
[11]. Wei-Li Li, Qiang Chen, Wen-Juan Tian, Hui Bai, Ya-Fan Zhao, Han-Shi Hu, Jun Li, Hua- Jin Zhai, Si-Dian Li and Lai-Sheng Wang (2014), “The B35 Cluster with a Double-Hexagonal Vacancy: A New and More Flexible Structural Motif for Borophene”, Journal of the American Chemical Society, (136), p. 12257-12260.
[12]. Xia Liu, Gao-feng Zhao, Ling-ju Guo, Qun Jing and You-hua Luo (2007), “Structural, Electronic, and Magnetic Properties of MBn (M= Cr, Mn, Fe, Co, Ni, n ≤ 7) Clusters”, Physical Review A, (75), p. 063201.
[13]. Quoc Tri Tran and Van Tan Tran (2016), “Quantum Chemical Study of the Geometrical and Electronic Structures of ScSi3−/0 Clusters and Assignment of the Anion Photoelectron Spectra”, The Journal of Chemical Physics, (144), p. 214305.
[14]. Van Tan Tran and Marc F. A. Hendrickx (2011), “Assignment of the Photoelectron Spectra of FeS3– by Density Functional Theory, CASPT2, and RCCSD(T) Calculations”, The Journal of Physical Chemistry A, (115), p. 13956-13964.
[15]. Van Tan Tran, Quoc Tri Tran and Marc F. A. Hendrickx (2015), “On the Multi-Reference Character of the Low-Lying States of the MnS−/0 Clusters by the NEVPT2 Assignment of the Anion Photoelectron Spectrum”, Chemical Physics Letters, (627), p. 121-125.
[16]. Van Tan Tran, Quoc Tri Tran and Marc F. A. Hendrickx (2015), “Geometric and Electronic Structures for MnS2–/0 Clusters by Interpreting the Anion Photoelectron Spectrum with Quantum Chemical Calculations”, The Journal of Physical Chemistry A, (119), p. 5626-5633.
[17]. Van Tan Tran and Quoc Tri Tran (2016), “Geometrical and Electronic Structures of MnS3–/0 Clusters from Computational Chemistry and Photoelectron Spectroscopy”, The Journal of Physical Chemistry A, (120), p. 3670-3676.
[18]. Demeter Tzeli and Aristides Mavridis (2008), “Electronic Structure and Bonding of the 3d Transition Metal Borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all Electron Ab Initio Calculations”, The Journal of Chemical Physics, (128), p. 034309.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Trần Văn Trận, Trần Quốc Trị, Nguyễn Minh Thảo, Phan Trung Cang, Trần Văn Tân, Phân tích phổ quang electron của cluster MnS- bằng hóa học lượng tử tính toán , Tạp chí Khoa học Đại học Đồng Tháp: Số 21 (2016): Phần B - Khoa học Tự nhiên
- Trần Văn Trận, Trần Quốc Trị, Nguyễn Minh Thảo, Phan Trung Cang, Trần Văn Tân, Nghiên cứu cấu trúc hình học và cấu trúc electron của cluster MnS3-/0 bằng hóa học tính toán và giải thích phổ quang electron của cluster anion , Tạp chí Khoa học Đại học Đồng Tháp: Số 23 (2016): Phần B - Khoa học Tự nhiên