Investigating the set of idempotents of Leavitt path algebra of the acyclic graphs

Thi Huong Tra Pham, Tan Phuc Ngo1
1 Dong Thap University

Main Article Content

Abstract

In this paper, we calculate the set of idempotents of the Leavitt path algebra of the acyclic graphs with coefficients in a field.

Article Details

References

[1]. G. Abrams (2015), “Leavitt path algebras: the first decade”, Bulletin of Mathematical Sciences, (5), p. 59-120.
[2]. G. Abrams and G. Aranda Pino (2005), “The Leavitt path algebra of a graph”, Journal of Algebra, (293), p. 319-334.
[3]. P. Ara, M. A. Moreno, E. Pardo (2007), “Nonstable K-theory path algebras”, Algebras and Representation Theory, (10), p. 157-178.
[4]. G. Calugareanu, T.Y.Lam (2016), “Fine rings: A new class of simple rings”, Journal of Algebra and Its Applications, (15), 1650173 (18 pages).
[5]. A. J. Diesl (2013), “Nil clean rings”, Journal of Algebra, (383), p. 197-121.
[6]. J. Matczuk (2016), “Conjugate (nil) clean rings and Kothe’s problem”, Journal of Algebra and Its Applications, Doi: 10.1142/S0219498817500736.
[7]. W. K. Nicholson (1977), “Lifting idempotents and exchange rings”, Transactions of the AMS, (229), p. 269-278.