Investigating the ugn property of the leavitt path algebra on the power graph

Huu Tinh Nguyen1, Tan Phuc Ngo2,
1 Student, Dong Thap University
2 Dong Thap University

Main Article Content

Abstract

In this paper, we investigate the power graph of the integers modulo group. Next, basing on the current results of the Leavitt path algebras, mainly on [1], we analyze the UGN property of the Leavitt path algebras on these graphs.

Article Details

References

[1]. G. Abrams, T. G. Nam and N. T. Phuc (2017), “Leavitt path algebras having unbounded generating number”, J. Pure and Applied Algebra, (221), p. 1322-1343.
[2]. G. Abrams and G. Aranda Pino (2005), “The Leavitt path algebra of a graph”, J. Algebra, (293), p. 319-334.
[3]. P. Ara, A. Moreno and E. Pardo (2007), “NonstableK-theory for graph algebras”, Algebra Represent Theory, (10), p. 157-178.
[4]. A. Haghany and K. Varadarajan (2002), “IBN and related properties for rings”, Acta Math. Hungar, ( 94), p. 251 - 261.
[5]. A. V. Kelarev (2002), “Directed graphs and combinatiorial properties of semigroups”, Journal of Algebra, (51), p. 16-26.
[6]. T. Y. Lam (1999), Lectures on modules và rings, Springer - Verlag, New York - Berlin.
[7]. W. G. Leavitt (1962), “The module type of a ring”, Trans. Amer. Math. Soc, (42), p. 113-130.