Prepare the citric acid-modified bentonite material to adsorb methylene blue in water

Thi Xuan Mai Tran1, Thi Ngoc Qui Nguyen2, Van Thang Bui3,
1 IT and Lab Center, Dong Thap University, Cao Lanh 870000, Vietnam
2 Faculty of Natural Sciences Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
3 Academic Affairs Office, Dong Thap University, Cao Lanh 870000, Vietnam

Main Article Content

Abstract

To reduce serious water pollution by dyeing wastewater, the citric acid-modified bentonite material was prepared by directly activating the raw bentonite with citric acid. The material was characterized by X-ray diffraction and FT-IR spectrum. The adsorption process of methylene blue by the citric acid-modified bentonite was studied with the effect of the amount of material, time, concentration, and temperature. The results indicate that the adsorption capacity increases as the amount of adsorbent, concentration, time, and temperature increase. The methylene adsorption by the citric acid-modified bentonite fits the Langmuir model with the max adsorption capacity of 244.45 mg/g. The adsorption kinetic of this process is the second-order apparent kinetic model. This process is endothermic and spontaneous. Therefore, the citric acid-modified bentonite may be a potential adsorbent to remove the dye from water aqueous.

Article Details

References

Al-Rashed, S. M., & Al-Gaid, A. A. (2012). Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society, 16(2), 209-215. https://doi.org/10.1016/j.jscs.2011.01.002
Alshehri, A. A., & Malik, M. A. (2019). Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. Journal of Materials Science: Materials in Electronics, 30(17), 16156-16173. https://doi.org/10.1007/s10854-019-01985-8
Amrhar, O., Nassali, H., & Elyoubi, M. (2015). Adsorption of a cationic dye, Methylene Blue, onto Moroccan Illitic Clay. Journal of Materials and Environmental Science, 6, 3054-3065.
Arias, M., López, E., Nuñez, A., Rubinos, D., Soto, B., Barral, M. T., & Díaz-Fierros, F. (1999). Adsorption of Methylene Blue by Red Mud, An Oxide- Rich Byproduct of Bauxite Refining. In J. Berthelin, P. M. Huang, J. M. Bollag, & F. Andreux (Eds.), Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments (pp. 361-365). Boston, MA: Springer US.
Belachew, N., & Bekele, G. (2020). Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon, 12(3), 603-612. https://doi.org/10.1007/s12633-019-00152-2
Bellifa, A., Makhlouf, M., & Boumila, Z. H. (2017). Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Phys. Pol. A, 132, 466-468. doi:DOI: 10.12693/APhysPolA.132.466
Brito, D. F., da Silva Filho, E. C., Fonseca, M. G., & Jaber, M. (2018). Organophilic bentonites obtained by microwave heating as adsorbents for anionic dyes. Journal of Environmental Chemical Engineering, 6(6), 7080-7090. https://doi.org/10.1016/j.jece.2018.11.006
El-Sheikh, A. H., Fasfous, I. I., Al-Salamin, R. M., & Newman, A. P. (2018). Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters. Journal of Environmental Chemical Engineering, 6(4), 5186-5195. https://doi.org/10.1016/j.jece.2018.08.020
Fosso-Kankeu, E., Waanders, F., & Fourie, C. L. (2016). Adsorption of Congo Red by surfactant-impregnated bentonite clay. Desalination and Water Treatment, 57(57), 27663-27671. https://doi.org/10.1080/19443994.2016.1177599
Gong, N., Liu, Y., & Huang, R. (2018). Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite. International Journal of Biological Macromolecules, 115, 580-589. https://doi.org/10.1016/j.ijbiomac.2018.04.075
Imane, L. N., Oukebdane, K., & Didi, M. (2023). Enhanced Removal of Bemacid Blue Anthraquinone Dye by Magnetic Nanocomposite Bentonite-Fe3O4: Equilibrium, Kinetic and Thermodynamic Studies. Malaysian Journal of Biochemistry and Molecular Biology, 25, 143-157.
Li, P., Gao, B., Li, A., & Yang, H. (2018). Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite. Microporous and Mesoporous Materials, 263, 210-219. https://doi.org/10.1016/j.micromeso.2017.12.025
Li, W., Bai, Y., Ma, Q., Chen, W., Wu, M., & Ma, H. (2018). Polyacrylic acid/CTAB-bentonite coated filter paper: Efficient and rapid removal of anionic and cationic dyes. Applied Surface Science, 458, 903-909. https://doi.org/10.1016/j.apsusc.2018.07.169
Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science, 487, 907-917. https://doi.org/10.1016/j.apsusc.2019.04.273
Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., & Abdel-Fattah, T. M. (2016). Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. Journal of Industrial and Engineering Chemistry, 37, 156-167. https://doi.org/10.1016/j.jiec.2016.03.020
Mahmoudian, M., Balkanloo, P. G., & Nozad, E. (2018). A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chinese Journal of Polymer Science, 36(1), 49-57. https://doi.org/10.1007/s10118-018-2004-3
My Linh, N. L., Duong, T., Van Duc, H., Thi Anh Thu, N., Khac Lieu, P., Van Hung, N., . . . Quang Khieu, D. (2020). Phenol red adsorption from aqueous solution on the modified bentonite. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/1504805
Niu, S., Xie, X., Wang, Z., Zheng, L., Gao, F., & Miao, Y. (2021). Enhanced removal performance for Congo red by coal-series kaolin with acid treatment. Environmental technology, 42(10), 1472-1481. https://doi.org/10.1080/09593330.2019.1670269
Patil, M. (2016). Adsorption of Methylene Blue in Waste Water by Low Cost Adsorbent Bentonite Soil.
Qu, W., Hu, Q., Zhu, Y., Peng, J., & Zhang, L. (2016). Microwave-assisted regeneration of spent activated carbon containing zinc acetate and its application for removal of congo red. Desalination and Water Treatment, 57(58), 28496-28511. https://doi.org/10.1080/19443994.2016.1179675
Rudzińska, M., Hassanein, M. M., Abdel‐Razek, A. G., Kmiecik, D., Siger, A., & Ratusz, K. (2018). Influence of composition on degradation during repeated deep‐fat frying of binary and ternary blends of palm, sunflower and soybean oils with health‐optimised saturated‐to‐unsaturated fatty acid ratios. International Journal of Food Science & Technology, 53(4), 1021-1029. https://doi.org/10.1111/ijfs.13678
Segovia-Sandoval, S. J., Ocampo-Pérez, R., Berber-Mendoza, M. S., Leyva-Ramos, R., Jacobo-Azuara, A., & Medellín-Castillo, N. A. (2018). Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II). Journal of Water Process Engineering, 25, 45-53. https://doi.org/10.1016/j.jwpe.2018.06.007
Taher, T., Mohadi, R., Rohendi, D., & Lesbani, A. (2017). Kinetic and thermodynamic adsorption studies of congo red on bentonite. Paper presented at the AIP Conference Proceedings.
Taher, T., Rohendi, D., Mohadi, R., & Lesbani, A. (2018). Thermal and Acid Activation (TAA) of bentonite as adsorbent for removal of methylene blue: A kinetics and thermodynamic study. Chiang Mai Journal of Science, 45(4), 1770-1781.
Taher, T., Rohendi, D., Mohadi, R., & Lesbani, A. (2019). Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26(1), 125-136. https://doi.org/10.1080/25765299.2019.1576274
Toor, M., Jin, B., Dai, S., & Vimonses, V. (2015). Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry, 21, 653-661. https://doi.org/10.1016/j.jiec.2014.03.033
Wang, H., Qin, X., Li, Z., Zheng, Z., & Fan, T.-Y. (2018). Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences, 50, 340-346.
Xu, Y., Khan, M. A., Wang, F., Xia, M., & Lei, W. (2018). Novel multi amine-containing Gemini surfactant modified montmorillonite as adsorbents for removal of phenols. Applied Clay Science, 162, 204-213. https://doi.org/10.1016/j.clay.2018.06.023
Yu, Z., Zhang, J., Yu, B., Zhang, H., Zhou, J., Tang, R., . . . Tong, Z. (2019). Citric Acid Modified Bentonite for Congo Red Adsorption. Frontiers in Materials, 6, 2019. doi:10.3389/fmats.2019.00005
Zhang, C., Qi, Y.-H., Qian, P., Zhong, M.-J., Wang, L., & Yin, H.-Z. (2014). Quantum chemical study of the adsorption of water molecules on kaolinite surfaces. Computational and Theoretical Chemistry, 1046, 10-19. https://doi.org/10.1016/j.comptc.2014.07.004
Zhang, H., Tong, Z., Wei, T., & Tang, Y. (2011). Removal characteristics of Zn(II) from aqueous solution by alkaline Ca-bentonite. Desalination, 276(1), 103-108. https://doi.org/10.1016/j.desal.2011.03.026
Zhang, H., Zhou, J., Muhammad, Y., Tang, R., Liu, K., Zhu, Y., & Tong, Z. (2019). Citric acid modified bentonite for Congo Red adsorption. Frontiers in Materials, 6, 5. https://doi.org/10.3389/fmats.2019.00005

Most read articles by the same author(s)