A novel approach to predicting structural relaxation in poly(ethylene oxide)

Duc Anh Phan1,2, , Thi Thao Duyen Nguyen3, Bich Hanh Vu1, Ngo Thi Que2, Thanh Viet Phan4, Kha Quang Quach4, Tran Van Huynh5, Minh Hieu Nguyen1
1 Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
2 Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
3 Faculty of Materials Science and Engineering, Phenikaa University
4 Division of Physics, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
5 Department of Basic Science, University of Fire, 243 Khuat Duy Tien, Hanoi 10000, Vietnam

Main Article Content

Abstract

Poly(ethylene oxide) (PEO) has emerged as a critical polymer for biomedical and energy applications due to its unique combination of biocompatibility, chain flexibility, and exceptional ion solvation properties. The glass transition temperature (Tg) serves as a fundamental parameter controlling PEO's segmental dynamics, ionic conductivity, and mechanical behavior - all crucial for its functional performance. We employ molecular dynamics (MD) simulations to systematically investigate the Tg value of PEO and provide atomistic insights into its thermal transitions and dynamic properties. Then, the MD-predicted Tg is integrated into the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to determine the temperature dependence of structural relaxation time and diffusion processes. Our theoretical calculations quantitatively agree with previous experimental data.

Article Details

Author Biographies

Dr. Duc Anh Phan, Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam

Faculty of Materials Science and Engineering, Phenikaa University  

 

Thi Thao Duyen Nguyen, Faculty of Materials Science and Engineering, Phenikaa University

Faculty of Materials Science and Engineering, Phenikaa University

Bich Hanh Vu, Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

Faculty of Materials Science and Engineering, Phenikaa University

Ngo Thi Que, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam

Faculty of Materials Science and Engineering, Phenikaa University  

Thanh Viet Phan, Division of Physics, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Graduate Student of Dong Thap University

Dr. Kha Quang Quach, Division of Physics, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Division of Physics, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Tran Van Huynh, Department of Basic Science, University of Fire, 243 Khuat Duy Tien, Hanoi 10000, Vietnam

Department of Basic Science, University of Fire, 243 Khuat Duy Tien, Hanoi 10000, Vietnam

Dr. Minh Hieu Nguyen, Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

Faculty of Materials Science and Engineering, Phenikaa University  

References

Faucher, J. A., Koleske, J. V., Santee, E. R., Stratta, J. J., & Wilson, C. W. (1966). Glass transitions of ethylene oxide polymers. Journal of Applied Physics, 37(11), 3962–3964. https://doi.org/10.1063/1.1707961
Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
Lunkenheimer, P., & Loidl, A. (2025). Relaxation Dynamics of Poly (ethylene oxide). Macromolecules, 58(7), 3547-3553. https://doi.org/10.1021/acs.macromol.5c00265
Miccio, L. A., Borredon, C., Casado, U., Phan, A. D., & Schwartz, G. A. (2022). Approaching polymer dynamics combining artificial neural networks and elastically collective nonlinear Langevin equation. Polymers, 14(8), 1573. https://doi.org/10.3390/polym14081573
Mindemark, J., Lacey, M. J., Bowden, T., & Brandell, D. (2018). Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 81, 114-143. https://doi.org/10.1016/j.progpolymsci.2017.12.004
Mirigian, S., & Schweizer, K. S. (2014a). Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids. The Journal of Chemical Physics, 140(19). https://doi.org/10.1063/1.4874842
Mirigian, S., & Schweizer, K. S. (2014b). Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids. The Journal of Chemical Physics, 140(19). https://doi.org/10.1063/1.4874843
Mirigian, S., & Schweizer, K. S. (2013). Unified theory of activated relaxation in liquids over 14 decades in time. The Journal of Physical Chemistry Letters, 4(21), 3648-3653. https://doi.org/10.1021/jz4018943
Mirigian, S., & Schweizer, K. S. (2015). Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films. Journal of Chemical Physics, 143(24). https://doi.org/10.1063/1.4937953
Money, B. K., & Swenson, J. (2013). Dynamics of poly(ethylene oxide) around its melting temperature. Macromolecules, 46(17), 6949–6954. https://doi.org/10.1021/ma4003598
Ngan, N. K., Phan, A. D., & Zaccone, A. (2021). Impact of high pressure on reversible structural relaxation of metallic glass. physica status solidi (RRL)–Rapid Research Letters, 15(8), 2100235. https://doi.org/10.1002/pssr.202100235
Phan, A. D. (2020). Determination of Young’s modulus of active pharmaceutical ingredients by relaxation dynamics at elevated pressures. Journal of Physical Chemistry B, 124(46), 10500–10506. https://doi.org/10.1021/acs.jpcb.0c05523
Phan, A. D., Jedrzejowska, A., Paluch, M., & Wakabayashi, K. (2020). Theoretical and experimental study of compression effects on structural relaxation of glass-forming liquids. ACS Omega, 5(19), 11035–11042. https://doi.org/10.1021/acsomega.0c00860
Phan, A. D., Knapik-Kowalczuk, J., Paluch, M., Hoang, T. X., & Wakabayashi, K. (2019). Theoretical model for the structural relaxation time in coamorphous drugs. Molecular Pharmaceutics, 16(7), 2992-2998. https://doi.org/10.1021/acs.molpharmaceut.9b00230
Phan, A. D., Koperwas, K., Paluch, M., & Wakabayashi, K. (2020). Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation. Physical Chemistry Chemical Physics, 22(42), 24365-24371. https://doi.org/10.1039/D0CP02761H
Phan, A. D., Nga, D. T., Que, N. T., Peng, H., Norhourmour, T., & Tu, L. M. (2025). A multiscale approach to structural relaxation and diffusion in metallic glasses. Computational Materials Science, 251, 113759. https://doi.org/10.1016/j.commatsci.2025.113759
Phan, A. D., Ngan, N. K., Nga, D. T., Le, N. B., & Ha, C. V. (2022). Tailoring drug mobility by photothermal heating of graphene plasmons. Physica Status Solidi - Rapid Research Letters, 16(4). https://doi.org/10.1002/pssr.202100496
Phan, A. D., & Schweizer, K. S. (2018a). Dynamic gradients, mobile layers, Tg shifts, role of vitrification criterion, and inhomogeneous decoupling in free-standing polymer films. Macromolecules, 51(15), 6063-6075. https://doi.org/10.1021/acs.macromol.8b01094
Phan, A. D., & Schweizer, K. S. (2018b). Elastically Collective Nonlinear Langevin Equation Theory of Dynamics in Glass-Forming Liquids: Transient Localization. Thermodynamic Mapping and Cooperativity, 122(35), 8451–8461 https://doi.org/10.48550/arXiv.1806.05348
Phan, A. D., & Wakabayashi, K. (2020). Theory of structural and secondary relaxation in amorphous drugs under compression. Pharmaceutics, 12(2). https://doi.org/10.3390/pharmaceutics12020177
Phan, A. D., Wakabayashi, K., Paluch, M., & Lam, V. D. (2019). Effects of cooling rate on structural relaxation in amorphous drugs: Elastically collective nonlinear langevin equation theory and machine learning study. RSC Advances, 9(69), 40214–40221. https://doi.org/10.1039/c9ra08441j
Phan, A. D., Zaccone, A., Lam, V. D., & Wakabayashi, K. (2021). Theory of pressure-induced rejuvenation and strain hardening in metallic glasses. Physical Review Letters, 126(2), 025502. https://doi.org/10.1103/PhysRevLett.126.025502
Schmidt, M., & Maurer, F. H. (1998). Pressure–volume–temperature properties and free volume parameters of PEO/PMMA blends. Journal of Polymer Science Part B: Polymer Physics, 36(6), 1061-1080. https://doi.org/10.1002/(SICI)1099-0488(19980430)36:6%3C1061::AID-POLB14%3E3.0.CO;2-4
Vrandečić, N. S., Erceg, M., Jakić, M., & Klarić, I. (2010). Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochimica Acta, 498(1–2), 71–80. https://doi.org/10.1016/j.tca.2009.10.005
White, R. P., & Lipson, J. E. (2016). Polymer free volume and its connection to the glass transition. Macromolecules, 49(11), 3987-4007. https://doi.org/10.1021/acs.macromol.6b00215
Wunderlich, B. (2005). Thermal analysis of polymeric materials. Springer Science & Business Media. doi: 10.1007/b137476
Xue, Z., He, D., & Xie, X. (2015). Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 3(38), 19218-19253. https://doi.org/10.1039/c5ta03471j