Evaluation of culture conditions for producing pigments and monacolin K from Monascus purpureus

Ngoc Thanh Nguyen1, Thi Anh Tho Pham1, Minh Chau Luu1, Hoang Dang Long Bui1, Xuan Phong Huynh1,
1 Biotechnology Research and Development Institute, Can Tho University, Vietnam

Main Article Content

Abstract

This study was conducted to determine the suitable initial pH for the production of pigment and monacolin K from the mold Monascus purpureus NBRC 4485. In addition,  to increase the biosynthesis ability of pigments and monacolin K, the effect of adding nutrients sources such as carbon and nitrogen to the brown rice substrate was investigated. The contents of yellow pigment, red pigment, and monacolin K were achieved at 6,946.71 AU/g, 6,269.33 AU/g and 2,574.45 µg/g, respectively when from M. purpureus cultured at pH 5 and the medium was supplemented with 0.5% (NH4)2SO4 and 0.8% glycerol. The pigment stability has decreased after 1 month (85.1% and 83.51% of yellow and red pigments were remained, respectively) in natural environmental conditions.

Article Details

References

Ariff, A. B. (1993). The influence of mode of operation on the production of glucoamylase by Aspergillus awamori. University of Manchester, Manchester, UK.
Babitha, S. S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 98(8), 1554-1560
Bizukojc, M., Pawlak, M., Boruta, T., & Gonciarz, J. (2012). Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. Journal of Biotechnology, 162(2-3), 253-261.
Broder, C. U., & Koehler, P. E. (1980). Pigments produced by Monascus purpureus with regard to quality and quantity. Journal of Food Science, 45(3), 567-569.
Chattopadhyay, P., Chatterjee, S., & Sen, S. K. (2008). Biotechnological potential of natural food grade biocolorants. African Journal of Biotechnology, 7(17), 2972-2985.
Chen, M. H., & Johns, M.R., (1993). Effect of pH and nitrogen source on pigment production by Monascus purpureus. Applied Microbiology and Biotechnology, 40, 132-138.
Darwesh, O. M., Matter, I. A., Eida, M. F., Moawad, H., & Oh, Y. K. (2019). Influence of nitrogen source and growth phase on extracellular biosynthesis of silver nanoparticles using cultural filtrates of Scenedesmus obliquus. Journal of Applied Sciences, 9, 1465.
Dobson, R., Gray, V., & Rumbold, K. (2012). Microbial utilization of crude glycerol for the production of value-added products. Journal of Industrial Microbiology and Biotechnology, 39(2), 217-226.
Embaby, A. M., Hussein, M. N., & Hussein, A. (2018). Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: An eco-friendly environmental low cost approach. Plos One, 13(12), 1-18.
Fabre, C. E., Santerre, A. L., Loret, M. O., Baberian, R., Pareilleux, A., Goma, G., & Blanc, P. J. (1993). Production and food applications of the red pigments of Monascus ruber. Journal of Food Science, 58(5), 1099-1102.
Feng, Y., Shao, Y., & Chen, F. (2012). Monascus pigments. Applied Microbiology and Biotechnology, 96, 1421-1440.
Feng, Y. L., Shao, Y. C., Zhou, Y. X., & Chen, F. S. (2015). Effects of glycerol on pigments and monacolin K production y the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1. European Food Research and Technology, 240(3), 635-643.
Gmoser, R., Ferreira, J. A., Lennartsson, P. R., & Taherzadeh, M. J. (2017). Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology and Biotechnology, 4(1), 1-25.
Gunasekaran, S., & Poorniammal, R. (2008). Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. African Journal of. Biotechnology, 7, 1894-1898.
Hamdi, M., Blanc, P. J., & Goma, G. (1996). Effect of aeration conditions on the production of red pigments by Monascus purpureus growth on prickly pear juice. Process Biochemistry, 31(6), 543-547.
Juzlová, P., Martínková, L., & Kren, V. (1996). Secondary metabolites of the fungus Monascus: A review. Journal of Industrial Microbiology and Biotechnology, 16, 163-170.
Kraboun, K., Tochampa, W., Chatdamrong, W., & Kongbangkerd, T. (2013). Effect of monosodium glutamate and peptone on antioxidant activity of monascal waxy corn. International Food Research Journal, 20(2), 623-631.
Krairak, S., Yamamura, K., Nakajima, M., Shimizu, H., & Anage, P. C. (1999). Maximum yellow pigment production utilizing a fed-batch culture. Biotechnology for Sustainable Utilization of Biological Resources in the Tropics, 14, 210-216.
Kranz, C., Panitz, C., & Kunz, B. (1992). Biotransformation of free fatty acids in mixtures to methyl ketones by Monascus purpureus. Applied Microbiology and Biotechnology, 36(4), 436-439.
Lee, Y. K., & Chen, D. C. (2000). Applications of Monascus pigments as food colorant in www.allok.com/literature.
Lee, C. L., Hung, H. K., Wang, J. J., & Pan, T. M. (2007). Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. Journal of Agricultural and Food Chemistry, 55(16), 6493-6502.
Li, C., Lesnik, K. L., & Liu, H. (2013). Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies, 6(9), 4739-4768.
Lin, T. F., & Demain, A. L. (1991). Effect of nutrition of Monascus sp. on formation of red pigments. Applied Microbiology and Biotechnology, 36, 70-75
Lin, T. F., Yakushijin, K., Büchi, G. H., & Demain, A. L. (1992). Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. Journal of Industrial Microbiology, 9, 173-179.
Lv, J., Zhang, B. B., Liu, X. D., Zhang, C., Chen, L., Xu, G. R., & Cheung, P. C. K. (2017). Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology. Journal of Bioscience and Bioengineering, 124(4), 452-458.
Malik, K., Tokkas, J., & Goyal, S. (2012). Microbial pigments: A review. International Journal of Microbial Resource Technology, 1, 361-365.
Mapari, S. A., Thrane, U., & Meyer, A. S. (2010). Fungal polyketide azaphilone pigments as future natural food colorants. Trends in Biotechnology, 28(6), 300-307.
Nguyễn, T. X. H. (2013). Nghiên cứu khả năng tạo sắc tố đỏ và Monacolin K từ vi nấm Monascus purpureus. Luận văn Thạc sĩ Sinh học. Trường Đại học Sư phạm TP. Hồ Chí Minh, Việt Nam.
Panda, B. P., Javed, S., & Ali, M. (2009). Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation. Biotechnology and Bioprocess Engineering, 14(1), 123-127.
Pastrana, L., Blanc, P. J., Santerre, A. L., Loret, M. O., & Goma, G. (1995). Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source. Process Biochemistry, 30(4), 333-341.
Sigurdson, G., Tang, P., & Giusti, M. M. (2017). Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology, 8, 261-280.
Su, Y. C., Wang, J. J., Lin, T. T., & Pan, T. M. (2003). Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. Journal of Industrial Microbiology and Biotechnology, 30(1), 41-46.
Subsaendee, T., Kitpreechavanich, V., & Yongsmith, B. (2014). Growth, glucoamylase, pigments and monacolin K production on rice solid culture in flask and koji chamber using Monascus sp KB9. Chiang Mai Journal of Science, 41(5.1), 1044-1057.
Sun, J. L., Zou, X., Liu, A. Y., & Xiao, T. F. (2011). Elevated yield of Monacolin K in Monascus purpureus by fungal elicitor and mutagenesis of UV and LiCl. Biological Research, 44(4), 377-382.
Suraiya, S., Kim, J. H., Tak, J. Y., Siddique, M. P., Young, C. J., & Kim, J. K. (2018). Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. Food Science and Technology, 92,1-9.
Tseng, Y. Y., Chen, M. T., & Lin, C. F. (2000). Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. Journal of Applied Microbiology, 88(1), 31-37.
Tuli, H. S., Chaudhary, P., Beniwal, V., & Sharma, A. K. (2015). Microbial pigments as natural color sources: Current trands and future perspective. Journal of Food Science and Technology, 52(8), 4669-4678.
Vũ, T. T., Huỳnh, B. N., Cao, T. H. G., & Trần, C. Đ. (2011). Khảo sát điều kiện nuôi cấy vi nấm Monascus purpureus để thu sinh khối giàu Monacolin. Tạp chí Y học TP. Hồ Chí Minh, 15(1), 195-202.
Wang, J. J., Lee, C. L., & Pan, T. M. (2003). Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. Journal of Industrial Microbiology and Biotechnology, 30(11), 669-676.
Yongsmith, B., Tabloka, W., Yongmanitchai, W., & Bavavoda, R. (1993). Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World Journal of Microbiology and Biotechnology, 9, 85-90.
Yoshimura, M., Yamanaka, S., Mitsugi, K., & Hirose, Y. (1975). Production of Monascus pigment in a submerged culture. Agricultural Biological Chemistry, 39(9), 1789-1795.
Zhang, L., Li, Z., Dai, B., Zhang, W., & Yuan, Y. (2013). Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus. Acta Biologica Hungarica, 64(3), 385-394.