Theoretical study of the reaction between propynylidyne radical and acetic acid molecule

Quoc Tri Tran1, , Thi Kim Thoa Pham2,3
1 Faculty of Natural Sciences Teacher Education, School of Education, DongThap University, Cao Lanh 870000, Vietnam
2 Post-graduate student, Dong Thap University, Cao Lanh 870000, Vietnam
3 Dinh An Secondary and High School, Go Quao district, Kien Giang province, Vietnam

Main Article Content

Abstract

The reaction of propynylidyne radical (Ċ3H) and acetic acid (CH3COOH) was studied by density functional theory (DFT) with B3LYP functional using 6-311++G(d,p) basis set. The potential energy surface (PES) of the system Ċ3H + CH3COOH, along with the thermodynamic parameters for the reaction paths were established and calculated in detail. The results of calculating 5 reaction paths showed that the products of this reaction could be (l-CCCH2 + C ̇H2COOH), (l-CCCH2 + CH3COO ̇), (c-CCCH2 + C ̇H2COOH), (c-CCCH2 + CH3COO ̇), (C3HCOOH + C ̇H3). Of which, the formation of (c-CCCH2 + C ̇H2COOH) is the most favorable. This study is a contribution to the understanding of the reactivity of propynylidyne radicals with small molecules in the atmosphere and combustion chemistry. This increases the understanding of the chemical reaction mechanism and may guide the design of new and more efficient chemical reactions in the future.

Article Details

References

Briggs, J. M., Nguyen, T. B., & Jorgensen, W. L. (1991). Monte Carlo simulations of liquid acetic acid and methyl acetate with the OPLS potential functions. The Journal of Physical Chemistry, 95(8), 3315-3322. https://doi.org/10.1021/j100161a065
Ding, H., Pino, T., Güthe, F., & Maier, J. P. (2001). Gas phase electronic spectrum of C3H in the visible. The Journal of Chemical Physics, 115(15), 6913-6919.
Dong, H., Ding, Y. H., & Sun, C. C. (2005). Radical-molecule reaction C3H+ H2O: A mechanistic study. The Journal of Chemical Physics, 122(6). 064303. https://doi.org/10.1063/1.1844301
Flores, J. R., & Gomez, F. J. (2001). A theoretical study of the S+ C3H reaction: Potential energy surfaces. The Journal of Physical Chemistry A, 105(45), 10384-10392. https://doi.org/10.1021/jp011532k
Frisch, A., Hratchian, H. P., Dennington li R. D., Keith, T. A., Millam, J., Nielsen, A. B., Holder, A. J., and Hiscocks, J. (2009). GaussView 5.0 Reference Gaussian. Inc. Walling.
Foresman J. B., and Frisch, E. (2016). Exploring chemistry with electronic structure methods, 3rd Edition, Gaussian. Inc, Wallingford, CTUSA.
Jones, R. E. (1956). The crystal structure of acetic acid. University of California Radiation Laboratory.
Hu, N., & Green, S. A. (2014). Acetyl radical generation in cigarette smoke: Quantification and simulations. Atmospheric Environment, 95, 142-150.
Koch, S., & Moortgat, G. K. (1990). Rate and mechanism of the reaction Cl+ CH3COOH. Chemical Physics Letters, 173(5-6), 531-536.
Mehringer, D. M., Snyder, L. E., Miao, Y., & Lovas, F. J. (1997). Detection and confirmation of interstellar acetic acid. The Astrophysical Journal, 480(1), L71. https://doi.org/10.1086/310612
Nguyễn, T. K. G., Trần, T. H. Y., Nguyễn, H. T., Nguyễn, T. H., Cao, T. H., Lê, V. C., & Vũ, N. D. (2018). Động học hình thành CH3COOH từ phản ứng CH3COOH + H2O2 trong sự có mặt của ion H+. Tạp chí Hóa học, 34(2) 91-95.
Nizamov, B., & Leone, S. R. (2004). Kinetics of C2H reactions with hydrocarbons and nitriles in the 104− 296 K temperature range. The Journal of Physical Chemistry A, 108(10), 1746-1752.
PubChem, (2024). Acetic acid. https://pubchem.ncbi.nlm.nih.gov/compound/176.
Singleton, D. L., Paraskevopoulos, G., & Irwin, R. S. (1989). Rates and mechanism of the reactions of hydroxyl radicals with acetic, deuterated acetic, and propionic acids in the gas phase. Journal of the American Chemical Society, 111(14), 5248-5251.
Thaddeus, P., Gottlieb, C. A., Hjalmarson, A., Johansson, L. E. B., Irvine, W. M., Friberg, P., & Linke, R. A. (1985). Astronomical identification of the C3H radical. Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), 294, L49-L53.
Trần, Q. T., & Nguyễn, T. M. H. (2011). Khảo sát lí thuyết khả năng phản ứng trong pha khí giữa C2H và HCOOH. Tạp chí Hoá học, 49(2ABC), 345-351.
Trần, Q. T., & Tô, Q. V. (2024). Nghiên cứu lí thuyết cơ chế phản ứng giữa gốc propynylidyne (Ċ3H) và phân tử propanenitrile (C2H5CN). Tạp chí Khoa học Đại học Đồng Tháp, 13(2), 91-98. https://doi.org/10.52714/dthu.13.2.2024.1238
Xie, H. B., Ding, Y. H., & Sun, C. C. (2006). Radical reaction C3H+NO: A mechanistic study. Journal of Computational Chemistry, 27(5), 641-660. https://doi.org/10.1002/jcc.20367
Zhu, W. W., Jin, L., Cui, Z. H., Zhang, S. W., & Ding, Y. H. (2013). Understanding the oxidation of the tricarbon radical C3H: A reaction pathway survey. International Journal of Quantum Chemistry, 113(23), 2506-2513. https://doi.org/10.1002/qua.24490
Yamamoto, S., Saito, S., Ohishi, M., Suzuki, H., Ishikawa, S. I., Kaifu, N., & Murakami, A. (1987). Laboratory and astronomical detection of the cyclic C3H radical. Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), vol. 322, Nov. 1, 1987, p. L55-L58. Research supported by the Inoue Foundation for Science and Japan Society for the Promotion of Science., 322, L55-L58.

Most read articles by the same author(s)