Reaction mechanism of the propynylidene radical with phosphine: a density functional theory investigation

Quoc Tri Tran1, , Thi My Duyen Phan2,3
1 Deparment of Natural Sciences Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
2 Post-graduate student, Dong Thap University, Cao Lanh 870000, Vietnam
3 Kien Giang Teacher Training College, An Giang province, Vietnam

Main Article Content

Abstract

The reaction mechanism of propynylidyne radical (Ċ3H) and phosphine (PH3) was studies by density functional theory with B3LYP functional using 6-311++G(d,p) basic set. The potential energy surface (PES) for the Ċ3H and PH3 system was established. The thermodynamic parameters and the reaction rate constants were calculated in detail. Calculated results indicate that products of this reaction can be (l-CCCH2 + H2), (l-H2PCCCH2), (l-HCCCHPH2), (c-C3H2 + H2), (c-H2PC3H2). However, the formation of (l-PH2CCCH2) is the most favorable. In addition, the calculation results also indicate that the formation of (l-CCCH2) and (c-C3H2) from Ċ3H and PH3 system is easier than the same from Ċ3H and NH3 system. This study is a contribution to the understanding of the reaction mechanisms of the propynylidyne radical with many small radicals and molecules in the atmosphere and combustion chemistry.

Article Details

References

Bonnet, L., & Rayez, J.-C. (2010). Dynamical derivation of Eyring equation and the second-order kinetic law. International Journal of Quantum Chemistry, 110(13), 2355–2359. https://doi.org/10.1002/qua.22545
Cardelino, B. H., Moore, C. E., Cardelino, C. A., McCall, S. D., Frazier, D. O., & Bachmann, K. J. (2003). Semiclassical calculation of reaction rate constants for homolytical dissociation reactions of interest in organometallic vapor-phase epitaxy (OMVPE). The Journal of Physical Chemistry A, 107(19), 3708–3718. https://doi.org/10.1021/jp026289j
Dong, H., Ding, Y. H., & Sun, C. C. (2005). Radical-molecule reaction C₃H + H₂O: A mechanistic study. The Journal of Chemical Physics, 122(6), 064303. https://doi.org/10.1063/1.1844301
Dutrey, A., Guilloteau, S., & Guélin, M. (1997). Chemistry of protosolar-like nebulae: The molecular content of the DM Tau and GG Tau disks. Astronomy and Astrophysics, 317, 55–58.
Flores, J. R., & Gomez, F. J. (2001). A theoretical study of the S + C₃H reaction: Potential energy surfaces. The Journal of Physical Chemistry A, 105(45), 10384–10392. https://doi.org/10.1021/jp011532k
Fukui, K. (1982). The role of frontier orbitals in chemical reactions. Nobel Lecture. https://www.nobelprize.org/prizes/chemistry/1981/fukui/lecture/
Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the Elements (2nd ed., p. 456). Butterworth-Heinemann.
Hamilton, P. A., & Murrells, T. P. (1985). Kinetics and mechanism of the reactions of PH₃ with O(³P) and N(⁴S) atoms. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 81(10), 1531–1541. https://doi.org/10.1039/f29858101531
Heckmann, G., & Fluck, E. (1972). ³¹P nuclear magnetic resonance chemical shifts of elemental phosphorus in the gas phase. Molecular Physics, 23(1), 175–183. https://doi.org/10.1080/00268977200100151
Hou, X.-J., Nguyen, T. L., Carl, S. A., Peeters, J., & Nguyen, M. T. (2005). Theoretical study of the kinetics of hydrogen abstraction in reactions of simple hydrogen compounds with triplet difluorocarbene. Chemical Physics Letters, 402(4–6), 460–467. https://doi.org/10.1016/j.cplett.2004.12.087
Irvine, W. M., Friberg, P., Hjalmarson, Å., Johansson, L. E. B., Thaddeus, P., Brown, R. D., & Godfrey, P. D. (1985). Confirmation of the existence of two new interstellar molecules: C₃H and C₃O. Bulletin of the American Astronomical Society, 16, 877.
Lee, Y.-E., & Choo, K. Y. (1986). Gas phase kinetic study of the thermal reactions of t-butoxy radicals with germane, phosphine, and trimethylsilane. International Journal of Chemical Kinetics, 18(2), 267–279. https://doi.org/10.1002/kin.550180211
Loison, J.-C., Agúndez, M., Wakelam, V., Roueff, E., Gratier, P., Marcelino, N., … Gerin, M. (2017). The interstellar chemistry of C₃H and C₃H₂ isomers. Monthly Notices of the Royal Astronomical Society, 470(4), 4075–4088. https://doi.org/10.1093/mnras/stx1265
Nguyễn, N. T. (2024). Nghiên cứu lý thuyết phản ứng của gốc propynylidyne (Ċ₃H) với phân tử amonia (NH₃) trong pha khí bằng phương pháp tính hóa học lượng tử [Master’s thesis, Trường Đại học Đồng Tháp].
Nguyễn, T. M. H., Phạm, T. K. O., & Trần, Q. T. (2011). Nghiên cứu lý thuyết cơ chế phản ứng giữa gốc etinyl với phosphine bằng phương pháp phiếm hàm mật độ. Tạp chí Hóa học, 49(2ABC), 327–332.
Thaddeus, P., Gottlieb, C. A., Hjalmarson, A., Johansson, L. E. B., Irvine, W. M., Friberg, P., & Linke, R. A. (1985). Astronomical identification of the C₃H radical. Astrophysical Journal, 294, L49–L53. https://doi.org/10.1086/184507
Trần, Q. T. (2011). Khảo sát thông số nhiệt động học, đường phản ứng của gốc tự do Etinyl trong một số phản ứng bằng phương pháp hóa học lượng tử. Luận án Tiến sĩ, Trường Đại học Sư phạm Hà Nội, Việt Nam.
Trần, Q. T., & Tô, Q. V. (2024). Nghiên cứu lí thuyết cơ chế phản ứng giữa gốc propynylidyne (Ċ₃H) và phân tử propanenitrile (C₂H₅CN). Tạp chí Khoa học Đại học Đồng Tháp, 13(2), 91–98. https://doi.org/10.52714/dthu.13.2.2024.1238
Turner, B. E., Herbst, E., & Terzieva, R. (2000). The physics and chemistry of small translucent molecular clouds. XIII. The basic hydrocarbon chemistry. The Astrophysical Journal Supplement Series, 126(2), 427–460. https://doi.org/10.1086/313301
Woon, D. E. (1995). A correlated ab initio study of linear carbon-chain radicals CₙH (n = 2−7). Chemical Physics Letters, 244(1–2), 45–52. https://doi.org/10.1016/0009-2614(95)00906-k
Xie, H. B., Ding, Y. H., & Sun, C. C. (2006). Radical reaction C₃H + NO: A mechanistic study. Journal of Computational Chemistry, 27(5), 641–660. https://doi.org/10.1002/jcc.20367
Yamamoto, S., Saito, S., Ohishi, M., Suzuki, H., Ishikawa, S. I., Kaifu, N., & Murakami, A. (1987). Laboratory and astronomical detection of the cyclic C₃H radical. Astrophysical Journal, 322, L55–L58. https://adsabs.harvard.edu/full/1987ApJ...322L..55Y
Yu, X., Li, S.-M., Liu, J.-Y., Xu, Z.-F., Li, Z.-S., & Sun, C.-C. (1999). Direct dynamics study on the hydrogen abstraction reaction PH₃ + H → •PH₂ + H₂. The Journal of Physical Chemistry A, 103(32), 6402–6405. https://doi.org/10.1021/jp990367u
Zhu, W. W., Jin, L., Cui, Z. H., Zhang, S. W., & Ding, Y. H. (2013). Understanding the oxidation of the tricarbon radical C₃H: A reaction pathway survey. International Journal of Quantum Chemistry, 113(23), 2506–2513. https://doi.org/10.1002/qua.24490

Most read articles by the same author(s)