Theoretical investigation of the reaction of the propynylidyne radical with propylene in the gas phase

Quoc Tri Tran1, , Kim Ngan Trinh Thi2,3
1 Deparment of Natural Sciences Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
2 Post-graduate student, Dong Thap University, Cao Lanh 870000, Vietnam
3 Chi Lang High School, Chi Lang ward, An Giang province, Vietnam

Main Article Content

Abstract

The reaction between the propynylidyne radical (Ċ3H) and propylene (C3H6) was investigated based on the density functional theory (DFT) with the B3LYP functional and the 6-311++G(d,p) basis set. The potential energy surface (PES) of the system was constructed from the calculated energies of the reactants, transition states, intermediates, and products. Twelve possible reaction pathways were identified, leading to various open-chain and cyclic radical isomers, as well as small organic molecules. These include (l-CCCH2 + HĊCHCH3), (l-CCCH2 + H2CĊCH3), (l-CCCH2 + H2CCHĊH2), (c-CCCH2 + HĊCHCH3), (c-CCCH2 + H2CĊCH3), (c-CCCH2 + H2CCHĊH2), (l-C3HCHCH2 + ĊH3), (l-C3HCHCHCH3 + Ḣ), (c-C3HCHCH2 + ĊH3), (c-C3HCCH2CH3 + Ḣ), (c-C3HCHCHCH3 + Ḣ), and (c-C3HCH2CHCH2 + Ḣ). Thermodynamic parameters for all reaction channels were also calculated. This study provides valuable insights into the reactivity of the propynylidyne radical with small organic molecules. Thereby, it contributes to a deeper understanding of reaction mechanisms in atmospheric chemistry and combustion processes, particularly the role of free radicals in hydrocarbon-rich environments.

Article Details

References

Dong, H., Ding, Y.-H., & Sun, C.-C. (2005). Radical molecule reaction C3H + H2O: A mechanistic study. The Journal of Chemical Physics, 122(6), 064303. https://doi.org/10.1063/1.1844301
Fossé, D., Cernicharo, J., Gerin, M., & Cox, P. (2001). Observations of l-C3H in molecular clouds. The Astrophysical Journal, 552(1), 168–176.
Irvine, W. M., Brown, R. D., Crovisier, J., & Matthews, H. E. (1985). Detection of interstellar l-C3H. The Astrophysical Journal, 292, 771–775.
Loison, J. C., Wakelam, V., Hickson, K. M., Bergeat, A., & Mereau, R. (2017). The interstellar chemistry of C3H isomers. Monthly Notices of the Royal Astronomical Society, 470(4), 4075–4086.
List, B., Bergman, P., & Müller, H. S. P. (2014). Detection of c-C3H in galactic molecular clouds. Astronomy & Astrophysics, 568, A22.
Matar, S., & Hatch, L. F. (2001). Chemistry of petrochemical processes (2nd ed.). Gulf Professional Publishing.
McGuire, B. A., Carroll, P. B., Loomis, R. A., et al. (2013). Investigating small hydrocarbons in TMC-1. The Astrophysical Journal, 774(1), 56.
Nixon, C. A., Temelso, B., Allen, M., Bézard, B., Jennings, D. E., Nixon, B. T., & Teanby, N. A. (2013). Detection of propene in Titan’s stratosphere. The Astrophysical Journal Letters, 776(1), L14. https://doi.org/10.1088/2041-8205/776/1/L14
Pety, J., Gratier, P., Guzmán, V. V., et al. (2012). Detection of complex hydrocarbons in the Horsehead Nebula. Astronomy & Astrophysics, 548, A68.
Simpson, I. J., Rowland, F. S., Meinardi, S., & Blake, D. R. (2010). Influence of biomass burning on mixing ratios of atmospheric gases in the Amazon Basin. Geophysical Research Letters, 37(22), L22810.
Thaddeus, P., Vrtilek, J. M., & Gottlieb, C. A. (1985). Laboratory and astronomical detection of l-C3H. The Astrophysical Journal Letters, 299, L63–L66.
Trị, T. Q., & Thoa, P. T. K. (2024). Nghiên cứu lý thuyết phản ứng giữa gốc propynylidyne với phân tử acetic acid. Tạp chí Khoa học Đại học Đồng Tháp, 14(2), 65-71.
Trị, T. Q., & Vinh, T. Q. (2024). Nghiên cứu lý thuyết cơ chế phản ứng giữa gốc propynylidyne (Ċ3H) và phân tử propanenitrile (C2H5CN). Tạp chí Khoa học Đại học Đồng Tháp, 13(2), 91-98.
Turner, B. E., Herbst, E., & Terzieva, R. (2000). Detection of c-C3H and l-C3H in dark clouds. The Astrophysical Journal Supplement Series, 126(2), 427–479.
Yamamoto, S., Saito, S., Ohishi, M., & Suzuki, H. (1987). Detection of the cyclopropynylidyne radical in interstellar clouds. The Astrophysical Journal, 317, L119–L122.
Yadav, R., & Kumbhar, A. G. (2017). Atmospheric chemistry of light hydrocarbons. Environmental Chemistry Letters, 15(2), 295–310. https://doi.org/10.1007/s10311-017-0614-3
Xie, H.-B., Ding, Y.-H., & Sun, C.-C. (2006). Radical reaction C3H + NO: A mechanistic study. Journal of Computational Chemistry, 27(5), 641–660. https://doi.org/10.1002/jcc.20367
Zhang, H., Li, Z., & Wang, J. (2020). Physical properties and thermodynamic modeling of light hydrocarbons. Journal of Molecular Liquids, 314, 113621. https://doi.org/10.1016/j.molliq.2020.113621
Zhu, W.-W., Jin, L., Cui, Z.-H., & Zhang, S. (2013). Understanding the oxidation of the tricarbon radical C3H: A reaction pathway survey. International Journal of Quantum Chemistry, 113(23). https://doi.org/10.1002/qua.24490

Most read articles by the same author(s)