Đa tạp con f-cực tiểu và định lý kiểu Bernstein trong không gian tích G2 x Rn
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi xây dựng các khái niệm f-vectơ độ cong trung bình và đa tạp con f-cực tiểu. Từ đó, chúng tôi chứng minh rằng đồ thị f-cực tiểu toàn phần của một hàm khả vi đạt cực trị tại một điểm trong không gian G2 x Rn , n >= 1, phải là một mặt phẳng.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Bernstein, mật độ, độ cong trung bình, đồ thị toàn phần, Lagrange.
Tài liệu tham khảo
[1]. R. Corwin, N. Hoffman, S. Hurder, V. Sesum, and Y. Xu (2006), “Differential geometry of manifolds with density”, Rose-Hulman Und. Math. J., 7 (1).
[2]. M. Gromov (2003), “Isoperimetry of waists and concentration of maps”, Geom. Funct. Anal., No. 13, P. 178-215.
[3]. Th. Hasanis, A.S. Halila, and Th. Vlachos(2009), “Minimal graphs in with bounded Jacobians”,Proc. Amer. Math. Soc., 137, no. 10, P. 3463-3471.
[4]. D.T. Hieuand N.M. Hoang (2009), "Ruled minimal surfaces in with density ",Pacific Journal of Mathematics, 243, No. 2, P. 277-285.
[5]. D.T. Hieuand T.L. Nam (2014), "Bernstein type theorem for entire weighted minimal graphs in ", Journal of Geometry and Physics, 81, P. 89-91.
[6]. F. Morgan (2005), “Manifolds with density”, Notices Amer. Math. Soc., 52, P. 853-858.
[7]. F. Morgan (2006), “Myers Theorem with density”, Kodai Math. J., 29, P. 454-460.
[8]. F. Morgan (2009), “Manifolds with density and Perelman's proof of the Poincare Conjecture”, Amer. Math. Monthly, 116, P. 134-142.
[9]. R. Osserman (2002), A survey on minimal surfaces,Courier Dover Publications.
[10]. L. Wang (2011), “A Bernstein type theorem for self-similar shrinkers”, Geom. Dedicata, 151, P. 297-303.
[2]. M. Gromov (2003), “Isoperimetry of waists and concentration of maps”, Geom. Funct. Anal., No. 13, P. 178-215.
[3]. Th. Hasanis, A.S. Halila, and Th. Vlachos(2009), “Minimal graphs in with bounded Jacobians”,Proc. Amer. Math. Soc., 137, no. 10, P. 3463-3471.
[4]. D.T. Hieuand N.M. Hoang (2009), "Ruled minimal surfaces in with density ",Pacific Journal of Mathematics, 243, No. 2, P. 277-285.
[5]. D.T. Hieuand T.L. Nam (2014), "Bernstein type theorem for entire weighted minimal graphs in ", Journal of Geometry and Physics, 81, P. 89-91.
[6]. F. Morgan (2005), “Manifolds with density”, Notices Amer. Math. Soc., 52, P. 853-858.
[7]. F. Morgan (2006), “Myers Theorem with density”, Kodai Math. J., 29, P. 454-460.
[8]. F. Morgan (2009), “Manifolds with density and Perelman's proof of the Poincare Conjecture”, Amer. Math. Monthly, 116, P. 134-142.
[9]. R. Osserman (2002), A survey on minimal surfaces,Courier Dover Publications.
[10]. L. Wang (2011), “A Bernstein type theorem for self-similar shrinkers”, Geom. Dedicata, 151, P. 297-303.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Trần Lê Nam, Huỳnh Phú Sĩ, Thiết kế website quản lí ngân hàng câu hỏi phân hóa đối với môn Toán lớp 12 , Tạp chí Khoa học Đại học Đồng Tháp: Tập 12 Số 8 (2023): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Trần Lê nam, Phan Thị Hiệp, Biên tập tài liệu tham khảo trên tệp Microsoft Word với sự hỗ trợ của phần mềm EndNote , Tạp chí Khoa học Đại học Đồng Tháp: Số 18 (2016): Phần B - Khoa học Tự nhiên
- Tran Le Nam, Phan Thi Hiep, Presenting a surface of revolution by using orthonormal projection with the TikZ package , Tạp chí Khoa học Đại học Đồng Tháp: Tập 12 Số 5 (2023): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Nguyen Thi Thanh Loan, Tran Le Nam, Phan Thi Hiep, Solving some elementary geometrical problems by Euclidean geometry’s methods , Tạp chí Khoa học Đại học Đồng Tháp: Tập 12 Số 3 (2023): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Anh)
- Trần Lê Nam, Phương trình đường trắc địa cực tiểu trên đa tạp với mật độ các đường trắc địa trên mặt phẳng với mật độ tuyến tính , Tạp chí Khoa học Đại học Đồng Tháp: Số 2 (2013): Phần B - Khoa học Tự nhiên