K-coincidence point without commutative condition in partially ordered metric

Ngoc Cam Huynh1, , Duc Thinh Vo1
1 Faculty of Mathematics - Informatics Teacher Education, Dong Thap University, Vietnam

Main Article Content

Abstract

In this paper, we introduce the concept of a new I-monotone mapping and establish k-coincidence point results without any type of commutativity condition which improve the results of Paknazar et al. Also, we give a supporting example of non-commuting mappings where the results of Paknazar et al. cannot be applied.

Article Details

References

Bhaskar, T. G., & Lakshmikantham, V. (2006). Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., 65, 1379-1393.
Borcut, M., & Berinde, V. (2012). Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput., 218, 5929-5936.
Haghi, R. H., Rezapour, S., & Shahzad, N. (2011). Some fixedpoint generalizations are not real generalizations. Nonlinear Anal., 74, 1799-1803.
Hussain, N., Latif, A., & Shah, M. H. (2012). Coupled and tripled coincidence point results without compatibility. Fixed Point Theory Appl., 2012(77), 1-10.
Lakshmikantham, V., & Ćirić, L. (2009). Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal., 70, 4341-4349.
Paknazar, M., Eshaghi Gordji, M., De La Sen, M., & Vaezpour, S. M. (2013). N–fixed point theorem for nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl., 2013(111), 1-15.