Theoretical study of the reaction mechanism between propynylidyne original (Ċ3H) and propanenitrile molecule (C2H5CN)
Main Article Content
Abstract
The reaction of the propynylidyne radical and propanenitrile was examined by the Density Functional Theory (DFT) using the B3LYP functional in conjunction with the 6-311++G(d,p) basis sets. The potential energy surface (PES) for the Ċ3H + C2H5CN system was also established. Results indicate the products of (CCCH2 + ĊH2CH2CN), (CCCH2 + CH3ĊHCN), (c-HCCCH + ĊH2CH2CN), (c-HCCCH + ĊH2CH2CN), (C3HCN + Ċ2H5), (HCC2NCCHCH3+ H), (HCC2NCCH2 + ĊH3), (HCCCHN + C2H4) and (c-C3HCN + Ċ2H5). However, the formation of (c-HCCCH + ĊH2CH2CN) and (HCCCHNĊ + C2H4) is the most favorable. Thus, this study contributes to understanding the reaction of the propynylidyne radical with molecules in the atmosphere and combustion chemistry.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Density functional theory (DFT), propanenitrile, propynylidyne radical, reaction mechanism
References
Hartung, R. (1982). Cyanides and nitriles. Patty’s industrial hygiene and toxicology, 2, 4845-4900.
Dong, H., Ding, Y. H., & Sun, C. C. (2005). Radical-molecule reaction C3H + H2O: A mechanistic study. The Journal of Chemical Physics, 122(6), 064303. https://doi.org/10.1063/1.1844301.
Irvine, W. M., Friberg, P., Hjalmarson, Å., Johansson, L. E. B., Thaddeus, P., Brown, R. D., & Godfrey, P. D. (1984). Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O. In Bulletin of the American Astronomical Society, 16, 877.
Flores, J. R., & Gomez, F. J. (2001). A theoretical study of the S + C3H reaction: Potential energy surfaces. The Journal of Physical Chemistry A, 105(45), 10384-10392. https://doi.org/10.1021/jp011532k.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Pople, J. A. Gaussian, Inc., Pittsburgh PA, http://cccbdb.nist.gov/
Frisch, M. J. (2010). Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford CT.
Nizamov, B., & Leone, S. R. (2004). Kinetics of C2H reactions with hydrocarbons and nitriles in the 104 − 296 K temperature range. The Journal of Physical Chemistry A, 108(10), 1746-1752. http://dx.doi.org/10.1021/jp031162v.
Thái, D. T. (2008). Cơ chế phản ứng hóa học hữu cơ. Hà Nội: NXB Khoa học và kỹ thuật.
Trần, Q. T., & Nguyễn, T. M. H.. (2011). Nghiên cứu lí thuyết cơ chế phản ứng giữa C2H và C2H5CN, Tạp chí Hoá học, 49(6), 60-64.
Thaddeus, P., Gottlieb, C. A., Hjalmarson, A., Johansson, L. E. B., Irvine, W. M., Friberg, P., & Linke, R. A. (1985). Astronomical identification of the .C3H radical. The Astrophysical Journal, 294, L49-L53. http://dx.doi.org/10.1086/184507.
Willhite, CC. (1981). Inhalational toxicology of acute exposure to aliphatic nitriles. Clin Toxicol, 18(8), 991-1003. https://doi.org/10.3109/15563658108990329.
Woon, D. E. (1995). A correlated ab initio study of linear carbon-chain radicals CnH (n = 2− 7). Chemical Physics Letters, 244(1-2), 45-52. http://dx.doi.org/10.1016/0009-2614(95)00906-k.
Xie, H. B., Ding, Y. H., & Sun, C. C. (2006). Radical reaction C3H + NO: A mechanistic study. Journal of Computational Chemistry, 27(5), 641-660. https://doi.org/10.1002/jcc.20367.
Yamamoto, S., Saito, S., Ohishi, M., Suzuki, H., Ishikawa, S. I., Kaifu, N., & Murakami, A. (1987). Laboratory and astronomical detection of the cyclic C3H radical. Astrophysical Journal, Part 2-Letters to the Editor, 322, L55-L58. Research supported by the Inoue Foundation for Science and Japan Society for the Promotion of Science, 322, L55-L58. http://dx.doi.org/10.1086/185036.
Zhu, W. W., Jin, L., Cui, Z. H., Zhang, S. W., & Ding, Y. H. (2013). Understanding the oxidation of the tricarbon radical C3H: A reaction pathway survey. International Journal of Quantum Chemistry, 113(23), 2506-2513. https://doi.org/10.1002/qua.24490.
Most read articles by the same author(s)
- Van Tan Tran, Thi Phuoc An Ngo, Thanh Tuan Tran, Thi Hong Hanh Nguyen, Minh Thao Nguyen, Quoc Tri Tran, Hoang Lin Nguyen, Structures and properties of VB5−/0 clusters from density functional theory calculations , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Phuoc Duy Vo, Quoc Tri Tran, Van Tan Tran, The nature of chemical bond in SO3 from the viewpoint of computational quantum chemistry , Dong Thap University Journal of Science: No. 16 (2015): Part B - Natural Sciences
- Bach Phuc Hau Huynh, Minh Thao Nguyen, Trung Cang Phan, Quoc Tri Tran, Van Tan Tran, An investigation of the geometrical and electronic structures of MnB0/−/+ clusters by multiconfigurational CASSCF/CASPT2 method , Dong Thap University Journal of Science: No. 30 (2018): Part B - Natural Sciences
- Thi My Nhan Tran, Minh Thao Nguyen, Quoc Tri Tran, Van Tan Tran, A CASSCF/CASPT2 investigation on the electronic states of MnB20/−/+ clusters , Dong Thap University Journal of Science: No. 40 (2019): Part B - Natural Sciences
- Van Tran Tran, Quoc Tri Tran, Minh Thao Nguyen, Trung Cang Phan, Van Tan Tran, Assignment of photoelectron spectrum of MnS− cluster by computational quantum chemistry , Dong Thap University Journal of Science: No. 21 (2016): Part B - Natural Sciences
- Van Tran Tran, Quoc Tri Tran, Minh Thao Nguyen, Trung Cang Phan, Van Tan Tran, Investigation on the geometrical and electronic structures of MnS3−/0 clusters by computational chemistry and interpretation of the anion photoelectron spectrum , Dong Thap University Journal of Science: No. 23 (2016): Part B - Natural Sciences