Fixed point theorems for contractions of rational type in ordered rectangular metric spaces
Main Article Content
Abstract
In this paper, we establish and prove some fixed point theorems for the contraction of rational type in ordered rectangular metric spaces. The obtained results are the generalizations of those in [4, 8]. Also, relevant examples are provided for illustration.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Fixed point, the contraction of rational type, ordered rectangular metric space.
References
[1]. H. Aydi, E. Karapinar, and H. Lakzian (2012), “Fixed point results on a class of generalized metric spaces”, Math. Sci., 6:46, 6 pages.
[2]. H. Aydi, E. Karapinar, and B. Samet (2014), “Fixed points for generalized -contractions on generalized metric spaces”, J. Inequal. Appl., 2014:229, 16 pages.
[3]. A. Branciari (2000), “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publ. Math. Debrecen, 57, pp.31- 37.
[4]. N. V. Can and N. X. Thuan (2013), “Fixed point theorem for generalized weak contractions involving rational expressions”, Open J. Math. Modeling, 1(2), pp.29-33.
[5]. S. Chandok, B. S. Choudhury, and N. Metiya (2014), “Fixed point results in ordered metric spaces for rational type expressions with auxiliary functions”, J. Egyptian Math. Soc., 7 pages, in press.
[6]. I. Cabrera, J. Harjani, and K. Sadarangani (2013), “A fixed point theorem for contractions of rational type in partially ordered metric spaces”, Ann. Univ. Ferrara, 59, 251-258.
[7]. B. K. Dass and S. Gupta (1975), “A extension of Banach contraction principle through rational expression”, Indian J. Pure Appl. Math., 6 (12), 1455-1458.
[8]. I. M Erhan, E. Karapinar, and T. Sekulic (2012), “Fixed points of contractions on rectangular metric spaces”, Fixed Point Theory Appl., 2012:138, 12 pages
[9]. W. Kirk and N. Shahzad (2013), “Generalized metrics and Caristi’s theorem”, Fixed Point Theory Appl., 2013:129, 9 pages.
[10]. R. P. Pathak, R. Tiwari, and R. Bhardwaj (2014), “Fixed point theorems through rational expression in altering distance functions”, Math. Theory Modeling, 4 (7), pp.78- 83.
[2]. H. Aydi, E. Karapinar, and B. Samet (2014), “Fixed points for generalized -contractions on generalized metric spaces”, J. Inequal. Appl., 2014:229, 16 pages.
[3]. A. Branciari (2000), “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publ. Math. Debrecen, 57, pp.31- 37.
[4]. N. V. Can and N. X. Thuan (2013), “Fixed point theorem for generalized weak contractions involving rational expressions”, Open J. Math. Modeling, 1(2), pp.29-33.
[5]. S. Chandok, B. S. Choudhury, and N. Metiya (2014), “Fixed point results in ordered metric spaces for rational type expressions with auxiliary functions”, J. Egyptian Math. Soc., 7 pages, in press.
[6]. I. Cabrera, J. Harjani, and K. Sadarangani (2013), “A fixed point theorem for contractions of rational type in partially ordered metric spaces”, Ann. Univ. Ferrara, 59, 251-258.
[7]. B. K. Dass and S. Gupta (1975), “A extension of Banach contraction principle through rational expression”, Indian J. Pure Appl. Math., 6 (12), 1455-1458.
[8]. I. M Erhan, E. Karapinar, and T. Sekulic (2012), “Fixed points of contractions on rectangular metric spaces”, Fixed Point Theory Appl., 2012:138, 12 pages
[9]. W. Kirk and N. Shahzad (2013), “Generalized metrics and Caristi’s theorem”, Fixed Point Theory Appl., 2013:129, 9 pages.
[10]. R. P. Pathak, R. Tiwari, and R. Bhardwaj (2014), “Fixed point theorems through rational expression in altering distance functions”, Math. Theory Modeling, 4 (7), pp.78- 83.
Most read articles by the same author(s)
- Cam Tien Truong, Trung Hieu Nguyen, Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces , Dong Thap University Journal of Science: No. 27 (2017): Part B - Natural Sciences
- Pham Cam Tu Cao, Trung Hieu Nguyen, Convergence of a two-step iteration process to common fixed points of two asymptotically g-nonexpansive mappings in Banach spaces with graphs , Dong Thap University Journal of Science: Vol. 9 No. 3 (2020): Natural Sciences Issue (Vietnamese)
- Trung Hieu Nguyen, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Thi Be Trang Huynh, Trung Hieu Nguyen, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Diem Ngoc Huynh, Trung Hieu Nguyen, Covergence of hybrid algorithms for α-nonexpansive mappings in Hilbert spaces , Dong Thap University Journal of Science: No. 25 (2017): Part B - Natural Sciences
- Trung Hieu Nguyen, Quoc Ai Ho, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Hien Huong Hoang, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Dong Thap University Journal of Science: No. 8 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Thi Vui Nguyen, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Dong Thap University Journal of Science: No. 7 (2014): Part B - Natural Sciences
- Kim Ngoan Nguyen, Trung Hieu Nguyen, Convergence of agarwal-type iteration process to common fixed points of two generalized -nonexpansive mappings in uniformly convex Banach spaces , Dong Thap University Journal of Science: No. 37 (2019): Part B - Natural Sciences
- Thi Kieu Ngan Doan, Trung Hieu Nguyen, Some common fixed point theorems for -weak nonlinear contraction in partially ordered metric-type spaces , Dong Thap University Journal of Science: No. 13 (2015): Part B - Natural Sciences